-
-
Notifications
You must be signed in to change notification settings - Fork 16.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
New YOLOv5 Classification Models #8956
Conversation
* enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
* enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Hi @glenn-jocher , First of all, congratulations to YOLOv5 for finally having classification models, do you plan to give a detection model pre-trained on this classification model? I guess this will also help to promote the application of this classification models.
@zhiqwang good question. I haven't tried to build detection models from the classification models, I actually went to the other way around and build the classification models by just attaching a Classify() module to the detection backbones. But yes we should be able to populate just the detection backbones from the ImageNet pretrained cls models now... |
@zhiqwang oh wow it actually works out of the box. Amazing. This is the command to transfer ImageNet backbone for detection training (head remains randomly initialised). python train.py --cfg yolov5s.yaml --weights yolov5s-cls.pt
...
# Transferred 186/349 items from yolov5s-cls.pt |
Hi @glenn-jocher , The flexibility of the YOLOv5 framework guarantees ease of use here! Another question is that I see that the classification model uses a different mean and std than the detection model, not sure if this would cause the pre-training mechanism to be disabled here? |
@zhiqwang yes the cls models use ImageNet normalization whereas the detection models do not normalize, that is a good point. |
* Update * Logger step fix: Increment step with epochs (ultralytics#8654) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Allow logging models from GenericLogger (ultralytics#8676) * enhance * revert * allow training from scratch * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update --img argument from train.py single line * fix image size from 640 to 128 * suport custom dataloader and augmentation * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * format * Update dataloaders.py * Single line return, single line comment, remove unused argument * address PR comments * fix spelling * don't augment eval set * use fstring * update augmentations.py * new maning convention for transforms * reverse if statement, inline ops * reverse if statement, inline ops * updates * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update dataloaders * Remove additional if statement * Remove is_train as redundant * Cleanup * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Cleanup2 * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update augmentations.py * fix: imshow clip warning * update * Revert ToTensorV2 removal * Update classifier.py * Update normalize values, revert uint8 * normalize image using cv2 * remove dedundant comment * Update classifier.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * replace print with logger * commit steps * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * support final model logging * update * update * update * update * remove curses * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update classifier.py * Update __init__.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Glenn Jocher <glenn.jocher@ultralytics.com> * Update * Update * Update * Update * Update dataset download * Update dataset download * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Pass imgsz to classify_transforms() * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Update * Cos scheduler * Cos scheduler * Remove unused args * Update * Add seed * Add seed * Update * Update * Add run(), main() * Merge master * Merge master * Update * Update * Update * Update * Update * Update * Update * Create YOLOv5 BaseModel class (ultralytics#8829) * Create BaseModel * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix * Hub load device fix * Update Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> * Add experiment * Merge master * Attach names * weight decay = 1e-4 * weight decay = 5e-5 * update smart_optimizer console printout * fashion-mnist fix * Merge master * Update Table * Update Table * Remove destroy process group * add kwargs to forward() * fuse fix for resnet50 * nc, names fix for resnet50 * nc, names fix for resnet50 * ONNX CPU inference fix * revert * cuda * if augment or visualize * if augment or visualize * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * New smart_inference_mode() * Update README * Refactor into /classify dir * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * reset defaults * reset defaults * fix gpu predict * warmup * ema half fix * spacing * remove data * remove cache * remove denormalize * save run settings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * verbose false on initial plots * new save_yaml() function * Update ci-testing.yml * Path(data) CI fix * Separate classification CI * fix val * fix val * fix val * smartCrossEntropyLoss * skip validation on hub load * autodownload with working dir root * str(data) * Dataset usage example * im_show normalize * im_show normalize * add imagenet simple names to multibackend * Add validation speeds * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * 24-space names * Update bash scripts * Update permissions * Add bash script arguments * remove verbose * TRT data fix * names generator fix * optimize if names * update usage * Add local loading * Verbose=False * update names printing * Add Usage examples * Add Usage examples * Add Usage examples * Add Usage examples * named_children * reshape_classifier_outputs * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * update * update * fix CI * fix incorrect class substitution * fix incorrect class substitution * remove denormalize * ravel fix * cleanup * update opt file printing * update opt file printing * update defaults * add opt to checkpoint * Add warning * Add comment * plot half bug fix * Use NotImplementedError * fix export shape report * Fix TRT load * cleanup CI * profile comment * CI fix * Add cls models * avoid inplace error * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Fix usage examples * Update README * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README * Update README Co-authored-by: Ayush Chaurasia <ayush.chaurarsia@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Could you please help me to know I can train this classifier from scratch rather than using knowledge transfer from pretrained? |
We trained YOLOv5-cls classification models on ImageNet for 90 epochs using a 4xA100 instance, and we trained ResNet and EfficientNet models alongside with the same default training settings to compare. We exported all models to ONNX FP32 for CPU speed tests and to TensorRT FP16 for GPU speed tests. We ran all speed tests on Google Colab Pro for easy reproducibility.
New Classification Checkpoints
(pixels)
top1
top5
90 epochs
4xA100 (hours)
ONNX CPU
(ms)
TensorRT V100
(ms)
(M)
@224 (B)
Reproduce by
python classify/val.py --data ../datasets/imagenet --img 224
Reproduce by
python classify/val.py --data ../datasets/imagenet --img 224 --batch 1
export.py
.Reproduce by
python export.py --weights yolov5s-cls.pt --include engine onnx --imgsz 224
New Classification Usage Examples
Train
YOLOv5 classification training supports auto-download of MNIST, Fashion-MNIST, CIFAR10, CIFAR100, Imagenette, Imagewoof, and ImageNet datasets with the
--data
argument. To start training on MNIST for example use--data mnist
.Val
Validate accuracy on a pretrained model. To validate YOLOv5s-cls accuracy on ImageNet.
bash data/scripts/get_imagenet.sh --val # download ImageNet val split (6.3G, 50000 images) python classify/val.py --weights yolov5s-cls.pt --data ../datasets/imagenet --img 224
Predict
Run a classification prediction on an image.
Export
Export a group of trained YOLOv5-cls, ResNet and EfficientNet models to ONNX and TensorRT.
🛠️ PR Summary
Made with ❤️ by Ultralytics Actions
🌟 Summary
Enhance YOLOv5 classification models, introduce training features, and improve GitHub workflows.
📊 Key Changes
🎯 Purpose & Impact
Purpose:
Impact to Users: