forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnvidia-gpus.go
233 lines (211 loc) · 7.51 KB
/
nvidia-gpus.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
/*
Copyright 2017 The Kubernetes Authors.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package scheduling
import (
"strings"
"time"
"k8s.io/api/core/v1"
"k8s.io/apimachinery/pkg/api/resource"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
"k8s.io/apimachinery/pkg/util/uuid"
"k8s.io/kubernetes/test/e2e/framework"
imageutils "k8s.io/kubernetes/test/utils/image"
. "github.com/onsi/ginkgo"
. "github.com/onsi/gomega"
)
const (
testPodNamePrefix = "nvidia-gpu-"
cosOSImage = "Container-Optimized OS from Google"
// Nvidia driver installation can take upwards of 5 minutes.
driverInstallTimeout = 10 * time.Minute
)
type podCreationFuncType func() *v1.Pod
var (
gpuResourceName v1.ResourceName
dsYamlUrl string
podCreationFunc podCreationFuncType
)
func makeCudaAdditionTestPod() *v1.Pod {
podName := testPodNamePrefix + string(uuid.NewUUID())
testPod := &v1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: podName,
},
Spec: v1.PodSpec{
RestartPolicy: v1.RestartPolicyNever,
Containers: []v1.Container{
{
Name: "vector-addition",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
VolumeMounts: []v1.VolumeMount{
{
Name: "nvidia-libraries",
MountPath: "/usr/local/nvidia/lib64",
},
},
},
},
Volumes: []v1.Volume{
{
Name: "nvidia-libraries",
VolumeSource: v1.VolumeSource{
HostPath: &v1.HostPathVolumeSource{
Path: "/home/kubernetes/bin/nvidia/lib",
},
},
},
},
},
}
return testPod
}
func makeCudaAdditionDevicePluginTestPod() *v1.Pod {
podName := testPodNamePrefix + string(uuid.NewUUID())
testPod := &v1.Pod{
ObjectMeta: metav1.ObjectMeta{
Name: podName,
},
Spec: v1.PodSpec{
RestartPolicy: v1.RestartPolicyNever,
Containers: []v1.Container{
{
Name: "vector-addition",
Image: imageutils.GetE2EImage(imageutils.CudaVectorAdd),
Resources: v1.ResourceRequirements{
Limits: v1.ResourceList{
gpuResourceName: *resource.NewQuantity(1, resource.DecimalSI),
},
},
},
},
},
}
return testPod
}
func isClusterRunningCOS(f *framework.Framework) bool {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
if !strings.Contains(node.Status.NodeInfo.OSImage, cosOSImage) {
return false
}
}
return true
}
func areGPUsAvailableOnAllSchedulableNodes(f *framework.Framework) bool {
framework.Logf("Getting list of Nodes from API server")
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
for _, node := range nodeList.Items {
if node.Spec.Unschedulable {
continue
}
framework.Logf("gpuResourceName %s", gpuResourceName)
if val, ok := node.Status.Capacity[gpuResourceName]; !ok || val.Value() == 0 {
framework.Logf("Nvidia GPUs not available on Node: %q", node.Name)
return false
}
}
framework.Logf("Nvidia GPUs exist on all schedulable nodes")
return true
}
func getGPUsAvailable(f *framework.Framework) int64 {
nodeList, err := f.ClientSet.CoreV1().Nodes().List(metav1.ListOptions{})
framework.ExpectNoError(err, "getting node list")
var gpusAvailable int64
for _, node := range nodeList.Items {
if val, ok := node.Status.Capacity[gpuResourceName]; ok {
gpusAvailable += (&val).Value()
}
}
return gpusAvailable
}
func testNvidiaGPUsOnCOS(f *framework.Framework) {
// Skip the test if the base image is not COS.
// TODO: Add support for other base images.
// CUDA apps require host mounts which is not portable across base images (yet).
framework.Logf("Checking base image")
if !isClusterRunningCOS(f) {
Skip("Nvidia GPU tests are supproted only on Container Optimized OS image currently")
}
framework.Logf("Cluster is running on COS. Proceeding with test")
if f.BaseName == "device-plugin-gpus" {
dsYamlUrl = framework.GPUDevicePluginDSYAML
gpuResourceName = framework.NVIDIAGPUResourceName
podCreationFunc = makeCudaAdditionDevicePluginTestPod
} else {
dsYamlUrl = "https://raw.githubusercontent.com/ContainerEngine/accelerators/master/cos-nvidia-gpu-installer/daemonset.yaml"
gpuResourceName = v1.ResourceNvidiaGPU
podCreationFunc = makeCudaAdditionTestPod
}
// GPU drivers might have already been installed.
if !areGPUsAvailableOnAllSchedulableNodes(f) {
// Install Nvidia Drivers.
ds, err := framework.DsFromManifest(dsYamlUrl)
Expect(err).NotTo(HaveOccurred())
ds.Namespace = f.Namespace.Name
_, err = f.ClientSet.Extensions().DaemonSets(f.Namespace.Name).Create(ds)
framework.ExpectNoError(err, "failed to create daemonset")
framework.Logf("Successfully created daemonset to install Nvidia drivers. Waiting for drivers to be installed and GPUs to be available in Node Capacity...")
// Wait for Nvidia GPUs to be available on nodes
Eventually(func() bool {
return areGPUsAvailableOnAllSchedulableNodes(f)
}, driverInstallTimeout, time.Second).Should(BeTrue())
}
framework.Logf("Creating as many pods as there are Nvidia GPUs and have the pods run a CUDA app")
podList := []*v1.Pod{}
for i := int64(0); i < getGPUsAvailable(f); i++ {
podList = append(podList, f.PodClient().Create(podCreationFunc()))
}
framework.Logf("Wait for all test pods to succeed")
// Wait for all pods to succeed
for _, po := range podList {
f.PodClient().WaitForSuccess(po.Name, 5*time.Minute)
}
}
var _ = SIGDescribe("[Feature:GPU]", func() {
f := framework.NewDefaultFramework("gpus")
It("run Nvidia GPU tests on Container Optimized OS only", func() {
testNvidiaGPUsOnCOS(f)
})
})
var _ = SIGDescribe("[Feature:GPUDevicePlugin]", func() {
f := framework.NewDefaultFramework("device-plugin-gpus")
It("run Nvidia GPU Device Plugin tests on Container Optimized OS only", func() {
// 1. Verifies GPU resource is successfully advertised on the nodes
// and we can run pods using GPUs.
By("Starting device plugin daemonset and running GPU pods")
testNvidiaGPUsOnCOS(f)
// 2. Verifies that when the device plugin DaemonSet is removed, resource capacity drops to zero.
By("Deleting device plugin daemonset")
ds, err := framework.DsFromManifest(dsYamlUrl)
Expect(err).NotTo(HaveOccurred())
falseVar := false
err = f.ClientSet.Extensions().DaemonSets(f.Namespace.Name).Delete(ds.Name, &metav1.DeleteOptions{OrphanDependents: &falseVar})
framework.ExpectNoError(err, "failed to delete daemonset")
framework.Logf("Successfully deleted device plugin daemonset. Wait for resource to be removed.")
// Wait for Nvidia GPUs to be not available on nodes
Eventually(func() bool {
return !areGPUsAvailableOnAllSchedulableNodes(f)
}, 5*time.Minute, time.Second).Should(BeTrue())
// 3. Restarts the device plugin DaemonSet. Verifies GPU resource is successfully advertised
// on the nodes and we can run pods using GPUs.
By("Restarting device plugin daemonset and running GPU pods")
testNvidiaGPUsOnCOS(f)
})
})