Skip to content

Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation (ICCV 2021; Oral)

License

Notifications You must be signed in to change notification settings

uta-smile/ASSUDA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ASSUDA

Code and data of Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation (ICCV 2021; Oral)

Datasets

Initial models

Training

An example (SYNTHIA->Cityscapes with DeepLab):

python main.py \
    --data-dir /path/to/synthia_deeplab \
    --data-list ./dataset/synthia_list/train.txt \
    --data-dir-target /path/to/cityscapes \
    --data-list-target ./dataset/cityscapes_list/train.txt \
    --data-label-folder-target /path/to/synthia_deeplab/cityscapes_ssl \
    --snapshot-dir ./snapshots/synthia2city_deeplab \
    --init-weights ./initial_model/DeepLab_init.pth \
    --num-steps-stop 80000 \
    --model DeepLab \
    --source synthia \
    --learning-rate 1e-4 \
    --learning-rate-D 1e-6 \
    --lambda-adv-target 1e-4 \
    --save-pred-every 5000 \
    --alpha 1.0 \
    --lambda-contrastive 0.01

Evaluation

An example (SYNTHIA->Cityscapes with DeepLab):

python evaluation.py \
    --data-dir-target /path/to/pspnet_attack/pspnet_fgsm_0.1 \
    --data-list-target ./dataset/cityscapes_list/val.txt \
    --gt_dir /path/to/cityscapes/gtFine/val \
    --devkit_dir ./dataset/cityscapes_list \
    --restore-from ./snapshots/synthia2city_deeplab/synthia_80000 \
    --save results/cityscapes_eval \
    --model DeepLab \
    --source synthia

Citation

@article{yang2021exploring,
  title={Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation},
  author={Yang, Jinyu and Li, Chunyuan and An, Weizhi and Ma, Hehuan and Guo, Yuzhi and Rong, Yu and Zhao, Peilin and Huang, Junzhou},
  journal={Proceedings of the IEEE international conference on computer vision (ICCV)},
  year={2021}
}

Acknowledgment

The code is heavily borrowed from BDL

About

Exploring Robustness of Unsupervised Domain Adaptation in Semantic Segmentation (ICCV 2021; Oral)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages