Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

dsi_panel: use Low power mode 1 with AOD #5

Closed
wants to merge 2 commits into from
Closed

dsi_panel: use Low power mode 1 with AOD #5

wants to merge 2 commits into from

Conversation

SVB22
Copy link
Contributor

@SVB22 SVB22 commented Sep 11, 2020

Reduces power consumption during AOD

@SVB22 SVB22 closed this Sep 11, 2020
vantoman pushed a commit that referenced this pull request Sep 28, 2020
[ Upstream commit d26383d ]

The following leaks were detected by ASAN:

  Indirect leak of 360 byte(s) in 9 object(s) allocated from:
    #0 0x7fecc305180e in calloc (/lib/x86_64-linux-gnu/libasan.so.5+0x10780e)
    #1 0x560578f6dce5 in perf_pmu__new_format util/pmu.c:1333
    #2 0x560578f752fc in perf_pmu_parse util/pmu.y:59
    #3 0x560578f6a8b7 in perf_pmu__format_parse util/pmu.c:73
    #4 0x560578e07045 in test__pmu tests/pmu.c:155
    #5 0x560578de109b in run_test tests/builtin-test.c:410
    #6 0x560578de109b in test_and_print tests/builtin-test.c:440
    #7 0x560578de401a in __cmd_test tests/builtin-test.c:661
    #8 0x560578de401a in cmd_test tests/builtin-test.c:807
    #9 0x560578e49354 in run_builtin /home/namhyung/project/linux/tools/perf/perf.c:312
    #10 0x560578ce71a8 in handle_internal_command /home/namhyung/project/linux/tools/perf/perf.c:364
    #11 0x560578ce71a8 in run_argv /home/namhyung/project/linux/tools/perf/perf.c:408
    #12 0x560578ce71a8 in main /home/namhyung/project/linux/tools/perf/perf.c:538
    #13 0x7fecc2b7acc9 in __libc_start_main ../csu/libc-start.c:308

Fixes: cff7f95 ("perf tests: Move pmu tests into separate object")
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
Acked-by: Jiri Olsa <jolsa@redhat.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Link: http://lore.kernel.org/lkml/20200915031819.386559-12-namhyung@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Noonlord pushed a commit to Noonlord/kernel_xiaomi_davinci that referenced this pull request Nov 15, 2020
I see the following lockdep splat in the qcom pinctrl driver when
attempting to suspend the device.

 WARNING: possible recursive locking detected
 5.4.11 vantoman#3 Tainted: G        W
 --------------------------------------------
 cat/3074 is trying to acquire lock:
 ffffff81f49804c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f1cc10c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 other info that might help us debug this:
  Possible unsafe locking scenario:

        CPU0
        ----
   lock(&irq_desc_lock_class);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

  May be due to missing lock nesting notation

 6 locks held by cat/3074:
  #0: ffffff81f01d9420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  vantoman#1: ffffff81bd7d2080 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  vantoman#2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  vantoman#3: ffffffe411a41d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  vantoman#4: ffffff81f1c5e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  vantoman#5: ffffff81f1cc10c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 stack backtrace:
 CPU: 5 PID: 3074 Comm: cat Tainted: G        W         5.4.11 vantoman#3
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  __lock_acquire+0x460/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  qpnpint_irq_set_wake+0x28/0x34
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  pm8941_pwrkey_suspend+0x34/0x44
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Set a lockdep class when we map the irq so that irq_set_wake() doesn't
warn about a lockdep bug that doesn't exist.

Change-Id: If7054fbc6c18d4d01e581a8a2e41cfc8a0990957
Fixes: 12a9eea ("spmi: pmic-arb: convert to v2 irq interfaces to support hierarchical IRQ chips")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121183748.68662-1-swboyd@chromium.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Git-commit: 2d5a2f9
Git-repo: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
[vvegivad@codeaurora.org: minor modifications needed to handle the API difference]
Signed-off-by: Veera Vegivada <vvegivad@codeaurora.org>
vantoman pushed a commit that referenced this pull request Apr 18, 2021
commit 90bd070 upstream.

The following deadlock is detected:

  truncate -> setattr path is waiting for pending direct IO to be done (inode->i_dio_count become zero) with inode->i_rwsem held (down_write).

  PID: 14827  TASK: ffff881686a9af80  CPU: 20  COMMAND: "ora_p005_hrltd9"
   #0  __schedule at ffffffff818667cc
   #1  schedule at ffffffff81866de6
   #2  inode_dio_wait at ffffffff812a2d04
   #3  ocfs2_setattr at ffffffffc05f322e [ocfs2]
   #4  notify_change at ffffffff812a5a09
   #5  do_truncate at ffffffff812808f5
   #6  do_sys_ftruncate.constprop.18 at ffffffff81280cf2
   #7  sys_ftruncate at ffffffff81280d8e
   #8  do_syscall_64 at ffffffff81003949
   #9  entry_SYSCALL_64_after_hwframe at ffffffff81a001ad

dio completion path is going to complete one direct IO (decrement
inode->i_dio_count), but before that it hung at locking inode->i_rwsem:

   #0  __schedule+700 at ffffffff818667cc
   #1  schedule+54 at ffffffff81866de6
   #2  rwsem_down_write_failed+536 at ffffffff8186aa28
   #3  call_rwsem_down_write_failed+23 at ffffffff8185a1b7
   #4  down_write+45 at ffffffff81869c9d
   #5  ocfs2_dio_end_io_write+180 at ffffffffc05d5444 [ocfs2]
   #6  ocfs2_dio_end_io+85 at ffffffffc05d5a85 [ocfs2]
   #7  dio_complete+140 at ffffffff812c873c
   #8  dio_aio_complete_work+25 at ffffffff812c89f9
   #9  process_one_work+361 at ffffffff810b1889
  #10  worker_thread+77 at ffffffff810b233d
  #11  kthread+261 at ffffffff810b7fd5
  #12  ret_from_fork+62 at ffffffff81a0035e

Thus above forms ABBA deadlock.  The same deadlock was mentioned in
upstream commit 28f5a8a ("ocfs2: should wait dio before inode lock
in ocfs2_setattr()").  It seems that that commit only removed the
cluster lock (the victim of above dead lock) from the ABBA deadlock
party.

End-user visible effects: Process hang in truncate -> ocfs2_setattr path
and other processes hang at ocfs2_dio_end_io_write path.

This is to fix the deadlock itself.  It removes inode_lock() call from
dio completion path to remove the deadlock and add ip_alloc_sem lock in
setattr path to synchronize the inode modifications.

[wen.gang.wang@oracle.com: remove the "had_alloc_lock" as suggested]
  Link: https://lkml.kernel.org/r/20210402171344.1605-1-wen.gang.wang@oracle.com

Link: https://lkml.kernel.org/r/20210331203654.3911-1-wen.gang.wang@oracle.com
Signed-off-by: Wengang Wang <wen.gang.wang@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Jun 23, 2021
[ Upstream commit 6980d13 ]

Geethika reported a trace when doing a dlpar CPU add.

------------[ cut here ]------------
WARNING: CPU: 152 PID: 1134 at kernel/sched/topology.c:2057
CPU: 152 PID: 1134 Comm: kworker/152:1 Not tainted 5.12.0-rc5-master #5
Workqueue: events cpuset_hotplug_workfn
NIP:  c0000000001cfc14 LR: c0000000001cfc10 CTR: c0000000007e3420
REGS: c0000034a08eb260 TRAP: 0700   Not tainted  (5.12.0-rc5-master+)
MSR:  8000000000029033 <SF,EE,ME,IR,DR,RI,LE>  CR: 28828422  XER: 00000020
CFAR: c0000000001fd888 IRQMASK: 0 #012GPR00: c0000000001cfc10
c0000034a08eb500 c000000001f35400 0000000000000027 #012GPR04:
c0000035abaa8010 c0000035abb30a00 0000000000000027 c0000035abaa8018
#012GPR08: 0000000000000023 c0000035abaaef48 00000035aa540000
c0000035a49dffe8 #012GPR12: 0000000028828424 c0000035bf1a1c80
0000000000000497 0000000000000004 #012GPR16: c00000000347a258
0000000000000140 c00000000203d468 c000000001a1a490 #012GPR20:
c000000001f9c160 c0000034adf70920 c0000034aec9fd20 0000000100087bd3
#012GPR24: 0000000100087bd3 c0000035b3de09f8 0000000000000030
c0000035b3de09f8 #012GPR28: 0000000000000028 c00000000347a280
c0000034aefe0b00 c0000000010a2a68
NIP [c0000000001cfc14] build_sched_domains+0x6a4/0x1500
LR [c0000000001cfc10] build_sched_domains+0x6a0/0x1500
Call Trace:
[c0000034a08eb500] [c0000000001cfc10] build_sched_domains+0x6a0/0x1500 (unreliable)
[c0000034a08eb640] [c0000000001d1e6c] partition_sched_domains_locked+0x3ec/0x530
[c0000034a08eb6e0] [c0000000002936d4] rebuild_sched_domains_locked+0x524/0xbf0
[c0000034a08eb7e0] [c000000000296bb0] rebuild_sched_domains+0x40/0x70
[c0000034a08eb810] [c000000000296e74] cpuset_hotplug_workfn+0x294/0xe20
[c0000034a08ebc30] [c000000000178dd0] process_one_work+0x300/0x670
[c0000034a08ebd10] [c0000000001791b8] worker_thread+0x78/0x520
[c0000034a08ebda0] [c000000000185090] kthread+0x1a0/0x1b0
[c0000034a08ebe10] [c00000000000ccec] ret_from_kernel_thread+0x5c/0x70
Instruction dump:
7d2903a6 4e800421 e8410018 7f67db78 7fe6fb78 7f45d378 7f84e378 7c681b78
3c62ff1a 3863c6f8 4802dc35 60000000 <0fe00000> 3920fff4 f9210070 e86100a0
---[ end trace 532d9066d3d4d7ec ]---

Some of the per-CPU masks use cpu_cpu_mask as a filter to limit the search
for related CPUs. On a dlpar add of a CPU, update cpu_cpu_mask before
updating the per-CPU masks. This will ensure the cpu_cpu_mask is updated
correctly before its used in setting the masks. Setting the numa_node will
ensure that when cpu_cpu_mask() gets called, the correct node number is
used. This code movement helped fix the above call trace.

Reported-by: Geetika Moolchandani <Geetika.Moolchandani1@ibm.com>
Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Nathan Lynch <nathanl@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20210401154200.150077-1-srikar@linux.vnet.ibm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
vantoman pushed a commit that referenced this pull request Aug 22, 2021
commit c23a9fd upstream.

Two patches listed below removed ctnetlink_dump_helpinfo call from under
rcu_read_lock. Now its rcu_dereference generates following warning:
=============================
WARNING: suspicious RCU usage
5.13.0+ #5 Not tainted
-----------------------------
net/netfilter/nf_conntrack_netlink.c:221 suspicious rcu_dereference_check() usage!

other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
stack backtrace:
CPU: 1 PID: 2251 Comm: conntrack Not tainted 5.13.0+ #5
Call Trace:
 dump_stack+0x7f/0xa1
 ctnetlink_dump_helpinfo+0x134/0x150 [nf_conntrack_netlink]
 ctnetlink_fill_info+0x2c2/0x390 [nf_conntrack_netlink]
 ctnetlink_dump_table+0x13f/0x370 [nf_conntrack_netlink]
 netlink_dump+0x10c/0x370
 __netlink_dump_start+0x1a7/0x260
 ctnetlink_get_conntrack+0x1e5/0x250 [nf_conntrack_netlink]
 nfnetlink_rcv_msg+0x613/0x993 [nfnetlink]
 netlink_rcv_skb+0x50/0x100
 nfnetlink_rcv+0x55/0x120 [nfnetlink]
 netlink_unicast+0x181/0x260
 netlink_sendmsg+0x23f/0x460
 sock_sendmsg+0x5b/0x60
 __sys_sendto+0xf1/0x160
 __x64_sys_sendto+0x24/0x30
 do_syscall_64+0x36/0x70
 entry_SYSCALL_64_after_hwframe+0x44/0xae

Fixes: 49ca022 ("netfilter: ctnetlink: don't dump ct extensions of unconfirmed conntracks")
Fixes: 0b35f60 ("netfilter: Remove duplicated rcu_read_lock.")
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Oct 16, 2021
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Don Mullis <don.mullis@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yousef Algadri <yusufgadrie@gmail.com>
vantoman pushed a commit that referenced this pull request Oct 16, 2021
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Don Mullis <don.mullis@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yousef Algadri <yusufgadrie@gmail.com>
vantoman pushed a commit that referenced this pull request Oct 16, 2021
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Don Mullis <don.mullis@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yousef Algadri <yusufgadrie@gmail.com>
vantoman pushed a commit that referenced this pull request Oct 23, 2021
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Don Mullis <don.mullis@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yousef Algadri <yusufgadrie@gmail.com>
vantoman pushed a commit that referenced this pull request Oct 24, 2021
Patch series "lib/sort & lib/list_sort: faster and smaller", v2.

Because CONFIG_RETPOLINE has made indirect calls much more expensive, I
thought I'd try to reduce the number made by the library sort functions.

The first three patches apply to lib/sort.c.

Patch #1 is a simple optimization.  The built-in swap has special cases
for aligned 4- and 8-byte objects.  But those are almost never used;
most calls to sort() work on larger structures, which fall back to the
byte-at-a-time loop.  This generalizes them to aligned *multiples* of 4
and 8 bytes.  (If nothing else, it saves an awful lot of energy by not
thrashing the store buffers as much.)

Patch #2 grabs a juicy piece of low-hanging fruit.  I agree that nice
simple solid heapsort is preferable to more complex algorithms (sorry,
Andrey), but it's possible to implement heapsort with far fewer
comparisons (50% asymptotically, 25-40% reduction for realistic sizes)
than the way it's been done up to now.  And with some care, the code
ends up smaller, as well.  This is the "big win" patch.

Patch #3 adds the same sort of indirect call bypass that has been added
to the net code of late.  The great majority of the callers use the
builtin swap functions, so replace the indirect call to sort_func with a
(highly preditable) series of if() statements.  Rather surprisingly,
this decreased code size, as the swap functions were inlined and their
prologue & epilogue code eliminated.

lib/list_sort.c is a bit trickier, as merge sort is already close to
optimal, and we don't want to introduce triumphs of theory over
practicality like the Ford-Johnson merge-insertion sort.

Patch #4, without changing the algorithm, chops 32% off the code size
and removes the part[MAX_LIST_LENGTH+1] pointer array (and the
corresponding upper limit on efficiently sortable input size).

Patch #5 improves the algorithm.  The previous code is already optimal
for power-of-two (or slightly smaller) size inputs, but when the input
size is just over a power of 2, there's a very unbalanced final merge.

There are, in the literature, several algorithms which solve this, but
they all depend on the "breadth-first" merge order which was replaced by
commit 835cc0c with a more cache-friendly "depth-first" order.
Some hard thinking came up with a depth-first algorithm which defers
merges as little as possible while avoiding bad merges.  This saves
0.2*n compares, averaged over all sizes.

The code size increase is minimal (64 bytes on x86-64, reducing the net
savings to 26%), but the comments expanded significantly to document the
clever algorithm.

TESTING NOTES: I have some ugly user-space benchmarking code which I
used for testing before moving this code into the kernel.  Shout if you
want a copy.

I'm running this code right now, with CONFIG_TEST_SORT and
CONFIG_TEST_LIST_SORT, but I confess I haven't rebooted since the last
round of minor edits to quell checkpatch.  I figure there will be at
least one round of comments and final testing.

This patch (of 5):

Rather than having special-case swap functions for 4- and 8-byte
objects, special-case aligned multiples of 4 or 8 bytes.  This speeds up
most users of sort() by avoiding fallback to the byte copy loop.

Despite what ca96ab8 ("lib/sort: Add 64 bit swap function") claims,
very few users of sort() sort pointers (or pointer-sized objects); most
sort structures containing at least two words.  (E.g.
drivers/acpi/fan.c:acpi_fan_get_fps() sorts an array of 40-byte struct
acpi_fan_fps.)

The functions also got renamed to reflect the fact that they support
multiple words.  In the great tradition of bikeshedding, the names were
by far the most contentious issue during review of this patch series.

x86-64 code size 872 -> 886 bytes (+14)

With feedback from Andy Shevchenko, Rasmus Villemoes and Geert
Uytterhoeven.

Link: http://lkml.kernel.org/r/f24f932df3a7fa1973c1084154f1cea596bcf341.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Don Mullis <don.mullis@gmail.com>
Cc: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Yousef Algadri <yusufgadrie@gmail.com>
vantoman pushed a commit that referenced this pull request Dec 15, 2021
commit 59f92868176f191eefde70d284bdfc1ed76a84bc upstream.

When reading the voltage:

$ cat /sys/bus/iio/devices/iio\:device0/in_voltage0_raw

Lockdep complains:

[  153.910616] ======================================================
[  153.916918] WARNING: possible circular locking dependency detected
[  153.923221] 5.14.0+ #5 Not tainted
[  153.926692] ------------------------------------------------------
[  153.932992] cat/717 is trying to acquire lock:
[  153.937525] c2585358 (&indio_dev->mlock){+.+.}-{3:3}, at: iio_device_claim_direct_mode+0x28/0x44
[  153.946541]
               but task is already holding lock:
[  153.952487] c2585860 (&dln2->mutex){+.+.}-{3:3}, at: dln2_adc_read_raw+0x94/0x2bc [dln2_adc]
[  153.961152]
               which lock already depends on the new lock.

Fix this by not calling into the iio core underneath the dln2->mutex lock.

Fixes: 7c0299e ("iio: adc: Add support for DLN2 ADC")
Cc: Jack Andersen <jackoalan@gmail.com>
Signed-off-by: Noralf Trønnes <noralf@tronnes.org>
Link: https://lore.kernel.org/r/20211018113731.25723-1-noralf@tronnes.org
Cc: <Stable@vger.kernel.org>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Jan 11, 2022
commit fd79a0cbf0b2e34bcc45b13acf962e2032a82203 upstream.

When kmalloc in nfc_genl_dump_devices() fails then
nfc_genl_dump_devices_done() segfaults as below

KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 25 Comm: kworker/0:1 Not tainted 5.16.0-rc4-01180-g2a987e65025e-dirty #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-6.fc35 04/01/2014
Workqueue: events netlink_sock_destruct_work
RIP: 0010:klist_iter_exit+0x26/0x80
Call Trace:
<TASK>
class_dev_iter_exit+0x15/0x20
nfc_genl_dump_devices_done+0x3b/0x50
genl_lock_done+0x84/0xd0
netlink_sock_destruct+0x8f/0x270
__sk_destruct+0x64/0x3b0
sk_destruct+0xa8/0xd0
__sk_free+0x2e8/0x3d0
sk_free+0x51/0x90
netlink_sock_destruct_work+0x1c/0x20
process_one_work+0x411/0x710
worker_thread+0x6fd/0xa80

Link: https://syzkaller.appspot.com/bug?id=fc0fa5a53db9edd261d56e74325419faf18bd0df
Reported-by: syzbot+f9f76f4a0766420b4a02@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@canonical.com>
Link: https://lore.kernel.org/r/20211208182742.340542-1-tadeusz.struk@linaro.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Apr 26, 2022
[ Upstream commit ef27324e2cb7bb24542d6cb2571740eefe6b00dc ]

Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).

The race can be demonstrated below:

Thread-1                           Thread-2
                                 | nci_dev_up()
                                 |   nci_open_device()
                                 |     __nci_request(nci_reset_req)
                                 |       nci_send_cmd
                                 |         queue_work(cmd_work)
nci_unregister_device()          |
  nci_close_device()             | ...
    del_timer_sync(cmd_timer)[1] |
...                              | Worker
nci_free_device()                | nci_cmd_work()
  kfree(ndev)[3]                 |   mod_timer(cmd_timer)[2]

In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.

This UAF is easy to trigger, crash trace by POC is like below

[   66.703713] ==================================================================
[   66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[   66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[   66.703974]
[   66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 #5
[   66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[   66.703974] Call Trace:
[   66.703974]  <TASK>
[   66.703974]  dump_stack_lvl+0x57/0x7d
[   66.703974]  print_report.cold+0x5e/0x5db
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  kasan_report+0xbe/0x1c0
[   66.703974]  ? enqueue_timer+0x448/0x490
[   66.703974]  enqueue_timer+0x448/0x490
[   66.703974]  __mod_timer+0x5e6/0xb80
[   66.703974]  ? mark_held_locks+0x9e/0xe0
[   66.703974]  ? try_to_del_timer_sync+0xf0/0xf0
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x17b/0x410
[   66.703974]  ? queue_work_on+0x61/0x80
[   66.703974]  ? lockdep_hardirqs_on+0xbf/0x130
[   66.703974]  process_one_work+0x8bb/0x1510
[   66.703974]  ? lockdep_hardirqs_on_prepare+0x410/0x410
[   66.703974]  ? pwq_dec_nr_in_flight+0x230/0x230
[   66.703974]  ? rwlock_bug.part.0+0x90/0x90
[   66.703974]  ? _raw_spin_lock_irq+0x41/0x50
[   66.703974]  worker_thread+0x575/0x1190
[   66.703974]  ? process_one_work+0x1510/0x1510
[   66.703974]  kthread+0x2a0/0x340
[   66.703974]  ? kthread_complete_and_exit+0x20/0x20
[   66.703974]  ret_from_fork+0x22/0x30
[   66.703974]  </TASK>
[   66.703974]
[   66.703974] Allocated by task 267:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  __kasan_kmalloc+0x81/0xa0
[   66.703974]  nci_allocate_device+0xd3/0x390
[   66.703974]  nfcmrvl_nci_register_dev+0x183/0x2c0
[   66.703974]  nfcmrvl_nci_uart_open+0xf2/0x1dd
[   66.703974]  nci_uart_tty_ioctl+0x2c3/0x4a0
[   66.703974]  tty_ioctl+0x764/0x1310
[   66.703974]  __x64_sys_ioctl+0x122/0x190
[   66.703974]  do_syscall_64+0x3b/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[   66.703974]
[   66.703974] Freed by task 406:
[   66.703974]  kasan_save_stack+0x1e/0x40
[   66.703974]  kasan_set_track+0x21/0x30
[   66.703974]  kasan_set_free_info+0x20/0x30
[   66.703974]  __kasan_slab_free+0x108/0x170
[   66.703974]  kfree+0xb0/0x330
[   66.703974]  nfcmrvl_nci_unregister_dev+0x90/0xd0
[   66.703974]  nci_uart_tty_close+0xdf/0x180
[   66.703974]  tty_ldisc_kill+0x73/0x110
[   66.703974]  tty_ldisc_hangup+0x281/0x5b0
[   66.703974]  __tty_hangup.part.0+0x431/0x890
[   66.703974]  tty_release+0x3a8/0xc80
[   66.703974]  __fput+0x1f0/0x8c0
[   66.703974]  task_work_run+0xc9/0x170
[   66.703974]  exit_to_user_mode_prepare+0x194/0x1a0
[   66.703974]  syscall_exit_to_user_mode+0x19/0x50
[   66.703974]  do_syscall_64+0x48/0x90
[   66.703974]  entry_SYSCALL_64_after_hwframe+0x44/0xae

To fix the UAF, this patch adds flush_workqueue() to ensure the
nci_cmd_work is finished before the following del_timer_sync.
This combination will promise the timer is actually detached.

Fixes: 6a2968a ("NFC: basic NCI protocol implementation")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
vantoman pushed a commit that referenced this pull request May 16, 2022
[ Upstream commit af68656d66eda219b7f55ce8313a1da0312c79e1 ]

While handling PCI errors (AER flow) driver tries to
disable NAPI [napi_disable()] after NAPI is deleted
[__netif_napi_del()] which causes unexpected system
hang/crash.

System message log shows the following:
=======================================
[ 3222.537510] EEH: Detected PCI bus error on PHB#384-PE#800000 [ 3222.537511] EEH: This PCI device has failed 2 times in the last hour and will be permanently disabled after 5 failures.
[ 3222.537512] EEH: Notify device drivers to shutdown [ 3222.537513] EEH: Beginning: 'error_detected(IO frozen)'
[ 3222.537514] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537516] bnx2x: [bnx2x_io_error_detected:14236(eth14)]IO error detected [ 3222.537650] EEH: PE#800000 (PCI 0384:80:00.0): bnx2x driver reports:
'need reset'
[ 3222.537651] EEH: PE#800000 (PCI 0384:80:00.1): Invoking
bnx2x->error_detected(IO frozen)
[ 3222.537651] bnx2x: [bnx2x_io_error_detected:14236(eth13)]IO error detected [ 3222.537729] EEH: PE#800000 (PCI 0384:80:00.1): bnx2x driver reports:
'need reset'
[ 3222.537729] EEH: Finished:'error_detected(IO frozen)' with aggregate recovery state:'need reset'
[ 3222.537890] EEH: Collect temporary log [ 3222.583481] EEH: of node=0384:80:00.0 [ 3222.583519] EEH: PCI device/vendor: 168e14e4 [ 3222.583557] EEH: PCI cmd/status register: 00100140 [ 3222.583557] EEH: PCI-E capabilities and status follow:
[ 3222.583744] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.583892] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.583893] EEH: PCI-E 20: 00000000 [ 3222.583893] EEH: PCI-E AER capability register set follows:
[ 3222.584079] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.584230] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.584378] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.584416] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.584416] EEH: of node=0384:80:00.1 [ 3222.584454] EEH: PCI device/vendor: 168e14e4 [ 3222.584491] EEH: PCI cmd/status register: 00100140 [ 3222.584492] EEH: PCI-E capabilities and status follow:
[ 3222.584677] EEH: PCI-E 00: 00020010 012c8da2 00095d5e 00455c82 [ 3222.584825] EEH: PCI-E 10: 10820000 00000000 00000000 00000000 [ 3222.584826] EEH: PCI-E 20: 00000000 [ 3222.584826] EEH: PCI-E AER capability register set follows:
[ 3222.585011] EEH: PCI-E AER 00: 13c10001 00000000 00000000 00062030 [ 3222.585160] EEH: PCI-E AER 10: 00002000 000031c0 000001e0 00000000 [ 3222.585309] EEH: PCI-E AER 20: 00000000 00000000 00000000 00000000 [ 3222.585347] EEH: PCI-E AER 30: 00000000 00000000 [ 3222.586872] RTAS: event: 5, Type: Platform Error (224), Severity: 2 [ 3222.586873] EEH: Reset without hotplug activity [ 3224.762767] EEH: Beginning: 'slot_reset'
[ 3224.762770] EEH: PE#800000 (PCI 0384:80:00.0): Invoking
bnx2x->slot_reset()
[ 3224.762771] bnx2x: [bnx2x_io_slot_reset:14271(eth14)]IO slot reset initializing...
[ 3224.762887] bnx2x 0384:80:00.0: enabling device (0140 -> 0142) [ 3224.768157] bnx2x: [bnx2x_io_slot_reset:14287(eth14)]IO slot reset
--> driver unload

Uninterruptible tasks
=====================
crash> ps | grep UN
     213      2  11  c000000004c89e00  UN   0.0       0      0  [eehd]
     215      2   0  c000000004c80000  UN   0.0       0      0
[kworker/0:2]
    2196      1  28  c000000004504f00  UN   0.1   15936  11136  wickedd
    4287      1   9  c00000020d076800  UN   0.0    4032   3008  agetty
    4289      1  20  c00000020d056680  UN   0.0    7232   3840  agetty
   32423      2  26  c00000020038c580  UN   0.0       0      0
[kworker/26:3]
   32871   4241  27  c0000002609ddd00  UN   0.1   18624  11648  sshd
   32920  10130  16  c00000027284a100  UN   0.1   48512  12608  sendmail
   33092  32987   0  c000000205218b00  UN   0.1   48512  12608  sendmail
   33154   4567  16  c000000260e51780  UN   0.1   48832  12864  pickup
   33209   4241  36  c000000270cb6500  UN   0.1   18624  11712  sshd
   33473  33283   0  c000000205211480  UN   0.1   48512  12672  sendmail
   33531   4241  37  c00000023c902780  UN   0.1   18624  11648  sshd

EEH handler hung while bnx2x sleeping and holding RTNL lock
===========================================================
crash> bt 213
PID: 213    TASK: c000000004c89e00  CPU: 11  COMMAND: "eehd"
  #0 [c000000004d477e0] __schedule at c000000000c70808
  #1 [c000000004d478b0] schedule at c000000000c70ee0
  #2 [c000000004d478e0] schedule_timeout at c000000000c76dec
  #3 [c000000004d479c0] msleep at c0000000002120cc
  #4 [c000000004d479f0] napi_disable at c000000000a06448
                                        ^^^^^^^^^^^^^^^^
  #5 [c000000004d47a30] bnx2x_netif_stop at c0080000018dba94 [bnx2x]
  #6 [c000000004d47a60] bnx2x_io_slot_reset at c0080000018a551c [bnx2x]
  #7 [c000000004d47b20] eeh_report_reset at c00000000004c9bc
  #8 [c000000004d47b90] eeh_pe_report at c00000000004d1a8
  #9 [c000000004d47c40] eeh_handle_normal_event at c00000000004da64

And the sleeping source code
============================
crash> dis -ls c000000000a06448
FILE: ../net/core/dev.c
LINE: 6702

   6697  {
   6698          might_sleep();
   6699          set_bit(NAPI_STATE_DISABLE, &n->state);
   6700
   6701          while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
* 6702                  msleep(1);
   6703          while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
   6704                  msleep(1);
   6705
   6706          hrtimer_cancel(&n->timer);
   6707
   6708          clear_bit(NAPI_STATE_DISABLE, &n->state);
   6709  }

EEH calls into bnx2x twice based on the system log above, first through
bnx2x_io_error_detected() and then bnx2x_io_slot_reset(), and executes
the following call chains:

bnx2x_io_error_detected()
  +-> bnx2x_eeh_nic_unload()
       +-> bnx2x_del_all_napi()
            +-> __netif_napi_del()

bnx2x_io_slot_reset()
  +-> bnx2x_netif_stop()
       +-> bnx2x_napi_disable()
            +->napi_disable()

Fix this by correcting the sequence of NAPI APIs usage,
that is delete the NAPI after disabling it.

Fixes: 7fa6f34 ("bnx2x: AER revised")
Reported-by: David Christensen <drc@linux.vnet.ibm.com>
Tested-by: David Christensen <drc@linux.vnet.ibm.com>
Signed-off-by: Manish Chopra <manishc@marvell.com>
Signed-off-by: Ariel Elior <aelior@marvell.com>
Link: https://lore.kernel.org/r/20220426153913.6966-1-manishc@marvell.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
mrfox2003 pushed a commit to mrfox2003/kernel_xiaomi_sm6150 that referenced this pull request Jun 11, 2022
https://bugzilla.kernel.org/show_bug.cgi?id=208565

PID: 257    TASK: ecdd0000  CPU: 0   COMMAND: "init"
  #0 [<c0b420ec>] (__schedule) from [<c0b423c8>]
  vantoman#1 [<c0b423c8>] (schedule) from [<c0b459d4>]
  vantoman#2 [<c0b459d4>] (rwsem_down_read_failed) from [<c0b44fa0>]
  vantoman#3 [<c0b44fa0>] (down_read) from [<c044233c>]
  vantoman#4 [<c044233c>] (f2fs_truncate_blocks) from [<c0442890>]
  vantoman#5 [<c0442890>] (f2fs_truncate) from [<c044d408>]
  vantoman#6 [<c044d408>] (f2fs_evict_inode) from [<c030be18>]
  vantoman#7 [<c030be18>] (evict) from [<c030a558>]
  vantoman#8 [<c030a558>] (iput) from [<c047c600>]
  vantoman#9 [<c047c600>] (f2fs_sync_node_pages) from [<c0465414>]
 vantoman#10 [<c0465414>] (f2fs_write_checkpoint) from [<c04575f4>]
 vantoman#11 [<c04575f4>] (f2fs_sync_fs) from [<c0441918>]
 vantoman#12 [<c0441918>] (f2fs_do_sync_file) from [<c0441098>]
 vantoman#13 [<c0441098>] (f2fs_sync_file) from [<c0323fa0>]
 vantoman#14 [<c0323fa0>] (vfs_fsync_range) from [<c0324294>]
 vantoman#15 [<c0324294>] (do_fsync) from [<c0324014>]
 vantoman#16 [<c0324014>] (sys_fsync) from [<c0108bc0>]

This can be caused by flush_dirty_inode() in f2fs_sync_node_pages() where
iput() requires f2fs_lock_op() again resulting in livelock.

Reported-by: Zhiguo Niu <Zhiguo.Niu@unisoc.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
mrfox2003 pushed a commit to mrfox2003/kernel_xiaomi_sm6150 that referenced this pull request Jun 11, 2022
This patch is to fix a crash:

 vantoman#3 [ffffb6580689f898] oops_end at ffffffffa2835bc2
 vantoman#4 [ffffb6580689f8b8] no_context at ffffffffa28766e7
 vantoman#5 [ffffb6580689f920] async_page_fault at ffffffffa320135e
    [exception RIP: f2fs_is_compressed_page+34]
    RIP: ffffffffa2ba83a2  RSP: ffffb6580689f9d8  RFLAGS: 00010213
    RAX: 0000000000000001  RBX: fffffc0f50b34bc0  RCX: 0000000000002122
    RDX: 0000000000002123  RSI: 0000000000000c00  RDI: fffffc0f50b34bc0
    RBP: ffff97e815a40178   R8: 0000000000000000   R9: ffff97e83ffc9000
    R10: 0000000000032300  R11: 0000000000032380  R12: ffffb6580689fa38
    R13: fffffc0f50b34bc0  R14: ffff97e825cbd000  R15: 0000000000000c00
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 vantoman#6 [ffffb6580689f9d8] __is_cp_guaranteed at ffffffffa2b7ea98
 vantoman#7 [ffffb6580689f9f0] f2fs_submit_page_write at ffffffffa2b81a69
 vantoman#8 [ffffb6580689fa30] f2fs_do_write_meta_page at ffffffffa2b99777
 vantoman#9 [ffffb6580689fae0] __f2fs_write_meta_page at ffffffffa2b75f1a
 vantoman#10 [ffffb6580689fb18] f2fs_sync_meta_pages at ffffffffa2b77466
 vantoman#11 [ffffb6580689fc98] do_checkpoint at ffffffffa2b78e46
 vantoman#12 [ffffb6580689fd88] f2fs_write_checkpoint at ffffffffa2b79c29
 vantoman#13 [ffffb6580689fdd0] f2fs_sync_fs at ffffffffa2b69d95
 vantoman#14 [ffffb6580689fe20] sync_filesystem at ffffffffa2ad2574
 vantoman#15 [ffffb6580689fe30] generic_shutdown_super at ffffffffa2a9b582
 vantoman#16 [ffffb6580689fe48] kill_block_super at ffffffffa2a9b6d1
 vantoman#17 [ffffb6580689fe60] kill_f2fs_super at ffffffffa2b6abe1
 #18 [ffffb6580689fea0] deactivate_locked_super at ffffffffa2a9afb6
 #19 [ffffb6580689feb8] cleanup_mnt at ffffffffa2abcad4
 #20 [ffffb6580689fee0] task_work_run at ffffffffa28bca28
 #21 [ffffb6580689ff00] exit_to_usermode_loop at ffffffffa28050b7
 #22 [ffffb6580689ff38] do_syscall_64 at ffffffffa280560e
 #23 [ffffb6580689ff50] entry_SYSCALL_64_after_hwframe at ffffffffa320008c

This occurred when umount f2fs if enable F2FS_FS_COMPRESSION
with F2FS_IO_TRACE. Fixes it by adding IS_IO_TRACED_PAGE to check
validity of pid for page_private.

Signed-off-by: Yu Changchun <yuchangchun1@huawei.com>
Reviewed-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Gelbpunkt pushed a commit to DavinciCodeOS/kernel_xiaomi_sm6150 that referenced this pull request Jul 27, 2022
…tion

commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447 upstream.

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 vantoman#1> mkdir -p /sys/fs/cgroup/misc/a/b
 vantoman#2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 vantoman#3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 vantoman#4> PID=$!
 vantoman#5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 vantoman#6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After vantoman#3, let's say the whole process was in cset A, and that after vantoman#4, the
leader moves to cset B. Then, during vantoman#6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Aug 7, 2022
…for migration

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 #1> mkdir -p /sys/fs/cgroup/misc/a/b
 #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 #4> PID=$!
 #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
(cherry picked from commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447
 https://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup.git for-5.19-fixes)
Bug: 235577024
Change-Id: Ieaf1c0c8fc23753570897fd6e48a54335ab939ce
Signed-off-by: Steve Muckle <smuckle@google.com>
Git-commit: d1faa01
Git-repo: https://android.googlesource.com/kernel/common/
Signed-off-by: Srinivasarao Pathipati <quic_c_spathi@quicinc.com>
vantoman pushed a commit that referenced this pull request Aug 7, 2022
…tion

commit 07fd5b6cdf3cc30bfde8fe0f644771688be04447 upstream.

Each cset (css_set) is pinned by its tasks. When we're moving tasks around
across csets for a migration, we need to hold the source and destination
csets to ensure that they don't go away while we're moving tasks about. This
is done by linking cset->mg_preload_node on either the
mgctx->preloaded_src_csets or mgctx->preloaded_dst_csets list. Using the
same cset->mg_preload_node for both the src and dst lists was deemed okay as
a cset can't be both the source and destination at the same time.

Unfortunately, this overloading becomes problematic when multiple tasks are
involved in a migration and some of them are identity noop migrations while
others are actually moving across cgroups. For example, this can happen with
the following sequence on cgroup1:

 #1> mkdir -p /sys/fs/cgroup/misc/a/b
 #2> echo $$ > /sys/fs/cgroup/misc/a/cgroup.procs
 #3> RUN_A_COMMAND_WHICH_CREATES_MULTIPLE_THREADS &
 #4> PID=$!
 #5> echo $PID > /sys/fs/cgroup/misc/a/b/tasks
 #6> echo $PID > /sys/fs/cgroup/misc/a/cgroup.procs

the process including the group leader back into a. In this final migration,
non-leader threads would be doing identity migration while the group leader
is doing an actual one.

After #3, let's say the whole process was in cset A, and that after #4, the
leader moves to cset B. Then, during #6, the following happens:

 1. cgroup_migrate_add_src() is called on B for the leader.

 2. cgroup_migrate_add_src() is called on A for the other threads.

 3. cgroup_migrate_prepare_dst() is called. It scans the src list.

 4. It notices that B wants to migrate to A, so it tries to A to the dst
    list but realizes that its ->mg_preload_node is already busy.

 5. and then it notices A wants to migrate to A as it's an identity
    migration, it culls it by list_del_init()'ing its ->mg_preload_node and
    putting references accordingly.

 6. The rest of migration takes place with B on the src list but nothing on
    the dst list.

This means that A isn't held while migration is in progress. If all tasks
leave A before the migration finishes and the incoming task pins it, the
cset will be destroyed leading to use-after-free.

This is caused by overloading cset->mg_preload_node for both src and dst
preload lists. We wanted to exclude the cset from the src list but ended up
inadvertently excluding it from the dst list too.

This patch fixes the issue by separating out cset->mg_preload_node into
->mg_src_preload_node and ->mg_dst_preload_node, so that the src and dst
preloadings don't interfere with each other.

Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Mukesh Ojha <quic_mojha@quicinc.com>
Reported-by: shisiyuan <shisiyuan19870131@gmail.com>
Link: http://lkml.kernel.org/r/1654187688-27411-1-git-send-email-shisiyuan@xiaomi.com
Link: https://www.spinics.net/lists/cgroups/msg33313.html
Fixes: f817de9 ("cgroup: prepare migration path for unified hierarchy")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Aug 7, 2022
In 2019, Sergey fixed a lockdep splat with 15341b1dd409 ("char/random:
silence a lockdep splat with printk()"), but that got reverted soon
after from 4.19 because back then it apparently caused various problems.
But the issue it was fixing is still there, and more generally, many
patches turning printk() into printk_deferred() have landed since,
making me suspect it's okay to try this out again.

This should fix the following deadlock found by the kernel test robot:

[   18.287691] WARNING: possible circular locking dependency detected
[   18.287692] 4.19.248-00165-g3d1f971aa81f #1 Not tainted
[   18.287693] ------------------------------------------------------
[   18.287712] stop/202 is trying to acquire lock:
[   18.287713] (ptrval) (console_owner){..-.}, at: console_unlock (??:?)
[   18.287717]
[   18.287718] but task is already holding lock:
[   18.287718] (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?)
[   18.287722]
[   18.287722] which lock already depends on the new lock.
[   18.287723]
[   18.287724]
[   18.287725] the existing dependency chain (in reverse order) is:
[   18.287725]
[   18.287726] -> #2 (&(&port->lock)->rlock){-...}:
[   18.287729] validate_chain+0x84a/0xe00
[   18.287729] __lock_acquire (lockdep.c:?)
[   18.287730] lock_acquire (??:?)
[   18.287731] _raw_spin_lock_irqsave (??:?)
[   18.287732] tty_port_tty_get (??:?)
[   18.287733] tty_port_default_wakeup (tty_port.c:?)
[   18.287734] tty_port_tty_wakeup (??:?)
[   18.287734] uart_write_wakeup (??:?)
[   18.287735] serial8250_tx_chars (??:?)
[   18.287736] serial8250_handle_irq (??:?)
[   18.287737] serial8250_default_handle_irq (8250_port.c:?)
[   18.287738] serial8250_interrupt (8250_core.c:?)
[   18.287738] __handle_irq_event_percpu (??:?)
[   18.287739] handle_irq_event_percpu (??:?)
[   18.287740] handle_irq_event (??:?)
[   18.287741] handle_edge_irq (??:?)
[   18.287742] handle_irq (??:?)
[   18.287742] do_IRQ (??:?)
[   18.287743] common_interrupt (entry_32.o:?)
[   18.287744] _raw_spin_unlock_irqrestore (??:?)
[   18.287745] uart_write (serial_core.c:?)
[   18.287746] process_output_block (n_tty.c:?)
[   18.287747] n_tty_write (n_tty.c:?)
[   18.287747] tty_write (tty_io.c:?)
[   18.287748] __vfs_write (??:?)
[   18.287749] vfs_write (??:?)
[   18.287750] ksys_write (??:?)
[   18.287750] sys_write (??:?)
[   18.287751] do_fast_syscall_32 (??:?)
[   18.287752] entry_SYSENTER_32 (??:?)
[   18.287752]
[   18.287753] -> #1 (&port_lock_key){-.-.}:
[   18.287756]
[   18.287756] -> #0 (console_owner){..-.}:
[   18.287759] check_prevs_add (lockdep.c:?)
[   18.287760] validate_chain+0x84a/0xe00
[   18.287761] __lock_acquire (lockdep.c:?)
[   18.287761] lock_acquire (??:?)
[   18.287762] console_unlock (??:?)
[   18.287763] vprintk_emit (??:?)
[   18.287764] vprintk_default (??:?)
[   18.287764] vprintk_func (??:?)
[   18.287765] printk (??:?)
[   18.287766] get_random_u32 (??:?)
[   18.287767] shuffle_freelist (slub.c:?)
[   18.287767] allocate_slab (slub.c:?)
[   18.287768] new_slab (slub.c:?)
[   18.287769] ___slab_alloc+0x6d0/0xb20
[   18.287770] __slab_alloc+0xd6/0x2e0
[   18.287770] __kmalloc (??:?)
[   18.287771] tty_buffer_alloc (tty_buffer.c:?)
[   18.287772] __tty_buffer_request_room (tty_buffer.c:?)
[   18.287773] tty_insert_flip_string_fixed_flag (??:?)
[   18.287774] pty_write (pty.c:?)
[   18.287775] process_output_block (n_tty.c:?)
[   18.287776] n_tty_write (n_tty.c:?)
[   18.287777] tty_write (tty_io.c:?)
[   18.287778] __vfs_write (??:?)
[   18.287779] vfs_write (??:?)
[   18.287780] ksys_write (??:?)
[   18.287780] sys_write (??:?)
[   18.287781] do_fast_syscall_32 (??:?)
[   18.287782] entry_SYSENTER_32 (??:?)
[   18.287783]
[   18.287783] other info that might help us debug this:
[   18.287784]
[   18.287785] Chain exists of:
[   18.287785]   console_owner --> &port_lock_key --> &(&port->lock)->rlock
[   18.287789]
[   18.287790]  Possible unsafe locking scenario:
[   18.287790]
[   18.287791]        CPU0                    CPU1
[   18.287792]        ----                    ----
[   18.287792]   lock(&(&port->lock)->rlock);
[   18.287794]                                lock(&port_lock_key);
[   18.287814]                                lock(&(&port->lock)->rlock);
[   18.287815]   lock(console_owner);
[   18.287817]
[   18.287818]  *** DEADLOCK ***
[   18.287818]
[   18.287819] 6 locks held by stop/202:
[   18.287820] #0: (ptrval) (&tty->ldisc_sem){++++}, at: ldsem_down_read (??:?)
[   18.287823] #1: (ptrval) (&tty->atomic_write_lock){+.+.}, at: tty_write_lock (tty_io.c:?)
[   18.287826] #2: (ptrval) (&o_tty->termios_rwsem/1){++++}, at: n_tty_write (n_tty.c:?)
[   18.287830] #3: (ptrval) (&ldata->output_lock){+.+.}, at: process_output_block (n_tty.c:?)
[   18.287834] #4: (ptrval) (&(&port->lock)->rlock){-...}, at: pty_write (pty.c:?)
[   18.287838] #5: (ptrval) (console_lock){+.+.}, at: console_trylock_spinning (printk.c:?)
[   18.287841]
[   18.287842] stack backtrace:
[   18.287843] CPU: 0 PID: 202 Comm: stop Not tainted 4.19.248-00165-g3d1f971aa81f #1
[   18.287843] Call Trace:
[   18.287844] dump_stack (??:?)
[   18.287845] print_circular_bug.cold+0x78/0x8b
[   18.287846] check_prev_add+0x66a/0xd20
[   18.287847] check_prevs_add (lockdep.c:?)
[   18.287848] validate_chain+0x84a/0xe00
[   18.287848] __lock_acquire (lockdep.c:?)
[   18.287849] lock_acquire (??:?)
[   18.287850] ? console_unlock (??:?)
[   18.287851] console_unlock (??:?)
[   18.287851] ? console_unlock (??:?)
[   18.287852] ? native_save_fl (??:?)
[   18.287853] vprintk_emit (??:?)
[   18.287854] vprintk_default (??:?)
[   18.287855] vprintk_func (??:?)
[   18.287855] printk (??:?)
[   18.287856] get_random_u32 (??:?)
[   18.287857] ? shuffle_freelist (slub.c:?)
[   18.287858] shuffle_freelist (slub.c:?)
[   18.287858] ? page_address (??:?)
[   18.287859] allocate_slab (slub.c:?)
[   18.287860] new_slab (slub.c:?)
[   18.287861] ? pvclock_clocksource_read (??:?)
[   18.287862] ___slab_alloc+0x6d0/0xb20
[   18.287862] ? kvm_sched_clock_read (kvmclock.c:?)
[   18.287863] ? __slab_alloc+0xbc/0x2e0
[   18.287864] ? native_wbinvd (paravirt.c:?)
[   18.287865] __slab_alloc+0xd6/0x2e0
[   18.287865] __kmalloc (??:?)
[   18.287866] ? __lock_acquire (lockdep.c:?)
[   18.287867] ? tty_buffer_alloc (tty_buffer.c:?)
[   18.287868] tty_buffer_alloc (tty_buffer.c:?)
[   18.287869] __tty_buffer_request_room (tty_buffer.c:?)
[   18.287869] tty_insert_flip_string_fixed_flag (??:?)
[   18.287870] pty_write (pty.c:?)
[   18.287871] process_output_block (n_tty.c:?)
[   18.287872] n_tty_write (n_tty.c:?)
[   18.287873] ? print_dl_stats (??:?)
[   18.287874] ? n_tty_ioctl (n_tty.c:?)
[   18.287874] tty_write (tty_io.c:?)
[   18.287875] ? n_tty_ioctl (n_tty.c:?)
[   18.287876] ? tty_write_unlock (tty_io.c:?)
[   18.287877] __vfs_write (??:?)
[   18.287877] vfs_write (??:?)
[   18.287878] ? __fget_light (file.c:?)
[   18.287879] ksys_write (??:?)

Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Lech Perczak <l.perczak@camlintechnologies.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: John Ogness <john.ogness@linutronix.de>
Reported-by: kernel test robot <oliver.sang@intel.com>
Link: https://lore.kernel.org/lkml/Ytz+lo4zRQYG3JUR@xsang-OptiPlex-9020
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Gelbpunkt pushed a commit to DavinciCodeOS/kernel_xiaomi_sm6150 that referenced this pull request Sep 8, 2022
commit 0c7d7cc2b4fe2e74ef8728f030f0f1674f9f6aee upstream.

There are two problems with the current code of memory_intersects:

First, it doesn't check whether the region (begin, end) falls inside the
region (virt, vend), that is (virt < begin && vend > end).

The second problem is if vend is equal to begin, it will return true but
this is wrong since vend (virt + size) is not the last address of the
memory region but (virt + size -1) is.  The wrong determination will
trigger the misreporting when the function check_for_illegal_area calls
memory_intersects to check if the dma region intersects with stext region.

The misreporting is as below (stext is at 0x80100000):
 WARNING: CPU: 0 PID: 77 at kernel/dma/debug.c:1073 check_for_illegal_area+0x130/0x168
 DMA-API: chipidea-usb2 e0002000.usb: device driver maps memory from kernel text or rodata [addr=800f0000] [len=65536]
 Modules linked in:
 CPU: 1 PID: 77 Comm: usb-storage Not tainted 5.19.0-yocto-standard vantoman#5
 Hardware name: Xilinx Zynq Platform
  unwind_backtrace from show_stack+0x18/0x1c
  show_stack from dump_stack_lvl+0x58/0x70
  dump_stack_lvl from __warn+0xb0/0x198
  __warn from warn_slowpath_fmt+0x80/0xb4
  warn_slowpath_fmt from check_for_illegal_area+0x130/0x168
  check_for_illegal_area from debug_dma_map_sg+0x94/0x368
  debug_dma_map_sg from __dma_map_sg_attrs+0x114/0x128
  __dma_map_sg_attrs from dma_map_sg_attrs+0x18/0x24
  dma_map_sg_attrs from usb_hcd_map_urb_for_dma+0x250/0x3b4
  usb_hcd_map_urb_for_dma from usb_hcd_submit_urb+0x194/0x214
  usb_hcd_submit_urb from usb_sg_wait+0xa4/0x118
  usb_sg_wait from usb_stor_bulk_transfer_sglist+0xa0/0xec
  usb_stor_bulk_transfer_sglist from usb_stor_bulk_srb+0x38/0x70
  usb_stor_bulk_srb from usb_stor_Bulk_transport+0x150/0x360
  usb_stor_Bulk_transport from usb_stor_invoke_transport+0x38/0x440
  usb_stor_invoke_transport from usb_stor_control_thread+0x1e0/0x238
  usb_stor_control_thread from kthread+0xf8/0x104
  kthread from ret_from_fork+0x14/0x2c

Refactor memory_intersects to fix the two problems above.

Before the 1d7db83 ("dma-debug: use memory_intersects()
directly"), memory_intersects is called only by printk_late_init:

printk_late_init -> init_section_intersects ->memory_intersects.

There were few places where memory_intersects was called.

When commit 1d7db83 ("dma-debug: use memory_intersects()
directly") was merged and CONFIG_DMA_API_DEBUG is enabled, the DMA
subsystem uses it to check for an illegal area and the calltrace above
is triggered.

[akpm@linux-foundation.org: fix nearby comment typo]
Link: https://lkml.kernel.org/r/20220819081145.948016-1-quanyang.wang@windriver.com
Fixes: 9795593 ("asm/sections: add helpers to check for section data")
Signed-off-by: Quanyang Wang <quanyang.wang@windriver.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Thierry Reding <treding@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Gelbpunkt pushed a commit to DavinciCodeOS/kernel_xiaomi_sm6150 that referenced this pull request Sep 16, 2022
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ]

The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 vantoman#1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 vantoman#2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 vantoman#3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 vantoman#4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 vantoman#5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 vantoman#6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 vantoman#7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 vantoman#8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <wmliang.tw@gmail.com>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <dlebrun@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Gelbpunkt pushed a commit to DavinciCodeOS/kernel_xiaomi_sm6150 that referenced this pull request Sep 26, 2022
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ]

The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 vantoman#1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 vantoman#2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 vantoman#3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 vantoman#4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 vantoman#5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 vantoman#6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 vantoman#7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 vantoman#8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <wmliang.tw@gmail.com>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <dlebrun@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Gelbpunkt pushed a commit to DavinciCodeOS/kernel_xiaomi_sm6150 that referenced this pull request Sep 29, 2022
[ Upstream commit 84a53580c5d2138c7361c7c3eea5b31827e63b35 ]

The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:

Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208		memcpy(hinfo->secret, secret, slen);
(gdb) bt
 #0  seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
 vantoman#1  0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
    extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
    family=<optimized out>) at net/netlink/genetlink.c:731
 vantoman#2  0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
    family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
 vantoman#3  genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
 vantoman#4  0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
    at net/netlink/af_netlink.c:2501
 vantoman#5  0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
 vantoman#6  0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
    at net/netlink/af_netlink.c:1319
 vantoman#7  netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
    at net/netlink/af_netlink.c:1345
 vantoman#8  0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'

The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET.

Reported-by: Lucas Leong <wmliang.tw@gmail.com>
Tested: verified that EINVAL is correctly returned when secretlen > len(secret)
Fixes: 4f4853d ("ipv6: sr: implement API to control SR HMAC structure")
Signed-off-by: David Lebrun <dlebrun@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
vantoman pushed a commit that referenced this pull request Jan 18, 2023
…g the sock

[ Upstream commit 3cf7203ca620682165706f70a1b12b5194607dce ]

There is a race condition in vxlan that when deleting a vxlan device
during receiving packets, there is a possibility that the sock is
released after getting vxlan_sock vs from sk_user_data. Then in
later vxlan_ecn_decapsulate(), vxlan_get_sk_family() we will got
NULL pointer dereference. e.g.

   #0 [ffffa25ec6978a38] machine_kexec at ffffffff8c669757
   #1 [ffffa25ec6978a90] __crash_kexec at ffffffff8c7c0a4d
   #2 [ffffa25ec6978b58] crash_kexec at ffffffff8c7c1c48
   #3 [ffffa25ec6978b60] oops_end at ffffffff8c627f2b
   #4 [ffffa25ec6978b80] page_fault_oops at ffffffff8c678fcb
   #5 [ffffa25ec6978bd8] exc_page_fault at ffffffff8d109542
   #6 [ffffa25ec6978c00] asm_exc_page_fault at ffffffff8d200b62
      [exception RIP: vxlan_ecn_decapsulate+0x3b]
      RIP: ffffffffc1014e7b  RSP: ffffa25ec6978cb0  RFLAGS: 00010246
      RAX: 0000000000000008  RBX: ffff8aa000888000  RCX: 0000000000000000
      RDX: 000000000000000e  RSI: ffff8a9fc7ab803e  RDI: ffff8a9fd1168700
      RBP: ffff8a9fc7ab803e   R8: 0000000000700000   R9: 00000000000010ae
      R10: ffff8a9fcb748980  R11: 0000000000000000  R12: ffff8a9fd1168700
      R13: ffff8aa000888000  R14: 00000000002a0000  R15: 00000000000010ae
      ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
   #7 [ffffa25ec6978ce8] vxlan_rcv at ffffffffc10189cd [vxlan]
   #8 [ffffa25ec6978d90] udp_queue_rcv_one_skb at ffffffff8cfb6507
   #9 [ffffa25ec6978dc0] udp_unicast_rcv_skb at ffffffff8cfb6e45
  #10 [ffffa25ec6978dc8] __udp4_lib_rcv at ffffffff8cfb8807
  #11 [ffffa25ec6978e20] ip_protocol_deliver_rcu at ffffffff8cf76951
  #12 [ffffa25ec6978e48] ip_local_deliver at ffffffff8cf76bde
  #13 [ffffa25ec6978ea0] __netif_receive_skb_one_core at ffffffff8cecde9b
  #14 [ffffa25ec6978ec8] process_backlog at ffffffff8cece139
  #15 [ffffa25ec6978f00] __napi_poll at ffffffff8ceced1a
  #16 [ffffa25ec6978f28] net_rx_action at ffffffff8cecf1f3
  #17 [ffffa25ec6978fa0] __softirqentry_text_start at ffffffff8d4000ca
  #18 [ffffa25ec6978ff0] do_softirq at ffffffff8c6fbdc3

Reproducer: https://github.com/Mellanox/ovs-tests/blob/master/test-ovs-vxlan-remove-tunnel-during-traffic.sh

Fix this by waiting for all sk_user_data reader to finish before
releasing the sock.

Reported-by: Jianlin Shi <jishi@redhat.com>
Suggested-by: Jakub Sitnicki <jakub@cloudflare.com>
Fixes: 6a93cc9 ("udp-tunnel: Add a few more UDP tunnel APIs")
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
vantoman pushed a commit that referenced this pull request Jan 18, 2023
commit 341097ee53573e06ab9fc675d96a052385b851fa upstream.

There's a crash in mempool_free when running the lvm test
shell/lvchange-rebuild-raid.sh.

The reason for the crash is this:
* super_written calls atomic_dec_and_test(&mddev->pending_writes) and
  wake_up(&mddev->sb_wait). Then it calls rdev_dec_pending(rdev, mddev)
  and bio_put(bio).
* so, the process that waited on sb_wait and that is woken up is racing
  with bio_put(bio).
* if the process wins the race, it calls bioset_exit before bio_put(bio)
  is executed.
* bio_put(bio) attempts to free a bio into a destroyed bio set - causing
  a crash in mempool_free.

We fix this bug by moving bio_put before atomic_dec_and_test.

We also move rdev_dec_pending before atomic_dec_and_test as suggested by
Neil Brown.

The function md_end_flush has a similar bug - we must call bio_put before
we decrement the number of in-progress bios.

 BUG: kernel NULL pointer dereference, address: 0000000000000000
 #PF: supervisor write access in kernel mode
 #PF: error_code(0x0002) - not-present page
 PGD 11557f0067 P4D 11557f0067 PUD 0
 Oops: 0002 [#1] PREEMPT SMP
 CPU: 0 PID: 73 Comm: kworker/0:1 Not tainted 6.1.0-rc3 #5
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
 Workqueue: kdelayd flush_expired_bios [dm_delay]
 RIP: 0010:mempool_free+0x47/0x80
 Code: 48 89 ef 5b 5d ff e0 f3 c3 48 89 f7 e8 32 45 3f 00 48 63 53 08 48 89 c6 3b 53 04 7d 2d 48 8b 43 10 8d 4a 01 48 89 df 89 4b 08 <48> 89 2c d0 e8 b0 45 3f 00 48 8d 7b 30 5b 5d 31 c9 ba 01 00 00 00
 RSP: 0018:ffff88910036bda8 EFLAGS: 00010093
 RAX: 0000000000000000 RBX: ffff8891037b65d8 RCX: 0000000000000001
 RDX: 0000000000000000 RSI: 0000000000000202 RDI: ffff8891037b65d8
 RBP: ffff8891447ba240 R08: 0000000000012908 R09: 00000000003d0900
 R10: 0000000000000000 R11: 0000000000173544 R12: ffff889101a14000
 R13: ffff8891562ac300 R14: ffff889102b41440 R15: ffffe8ffffa00d05
 FS:  0000000000000000(0000) GS:ffff88942fa00000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000000 CR3: 0000001102e99000 CR4: 00000000000006b0
 Call Trace:
  <TASK>
  clone_endio+0xf4/0x1c0 [dm_mod]
  clone_endio+0xf4/0x1c0 [dm_mod]
  __submit_bio+0x76/0x120
  submit_bio_noacct_nocheck+0xb6/0x2a0
  flush_expired_bios+0x28/0x2f [dm_delay]
  process_one_work+0x1b4/0x300
  worker_thread+0x45/0x3e0
  ? rescuer_thread+0x380/0x380
  kthread+0xc2/0x100
  ? kthread_complete_and_exit+0x20/0x20
  ret_from_fork+0x1f/0x30
  </TASK>
 Modules linked in: brd dm_delay dm_raid dm_mod af_packet uvesafb cfbfillrect cfbimgblt cn cfbcopyarea fb font fbdev tun autofs4 binfmt_misc configfs ipv6 virtio_rng virtio_balloon rng_core virtio_net pcspkr net_failover failover qemu_fw_cfg button mousedev raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod sd_mod t10_pi crc64_rocksoft crc64 virtio_scsi scsi_mod evdev psmouse bsg scsi_common [last unloaded: brd]
 CR2: 0000000000000000
 ---[ end trace 0000000000000000 ]---

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
vantoman pushed a commit that referenced this pull request Jan 18, 2023
[ Upstream commit b18cba09e374637a0a3759d856a6bca94c133952 ]

Commit 9130b8d ("SUNRPC: allow for upcalls for the same uid
but different gss service") introduced `auth` argument to
__gss_find_upcall(), but in gss_pipe_downcall() it was left as NULL
since it (and auth->service) was not (yet) determined.

When multiple upcalls with the same uid and different service are
ongoing, it could happen that __gss_find_upcall(), which returns the
first match found in the pipe->in_downcall list, could not find the
correct gss_msg corresponding to the downcall we are looking for.
Moreover, it might return a msg which is not sent to rpc.gssd yet.

We could see mount.nfs process hung in D state with multiple mount.nfs
are executed in parallel.  The call trace below is of CentOS 7.9
kernel-3.10.0-1160.24.1.el7.x86_64 but we observed the same hang w/
elrepo kernel-ml-6.0.7-1.el7.

PID: 71258  TASK: ffff91ebd4be0000  CPU: 36  COMMAND: "mount.nfs"
 #0 [ffff9203ca3234f8] __schedule at ffffffffa3b8899f
 #1 [ffff9203ca323580] schedule at ffffffffa3b88eb9
 #2 [ffff9203ca323590] gss_cred_init at ffffffffc0355818 [auth_rpcgss]
 #3 [ffff9203ca323658] rpcauth_lookup_credcache at ffffffffc0421ebc
[sunrpc]
 #4 [ffff9203ca3236d8] gss_lookup_cred at ffffffffc0353633 [auth_rpcgss]
 #5 [ffff9203ca3236e8] rpcauth_lookupcred at ffffffffc0421581 [sunrpc]
 #6 [ffff9203ca323740] rpcauth_refreshcred at ffffffffc04223d3 [sunrpc]
 #7 [ffff9203ca3237a0] call_refresh at ffffffffc04103dc [sunrpc]
 #8 [ffff9203ca3237b8] __rpc_execute at ffffffffc041e1c9 [sunrpc]
 #9 [ffff9203ca323820] rpc_execute at ffffffffc0420a48 [sunrpc]

The scenario is like this. Let's say there are two upcalls for
services A and B, A -> B in pipe->in_downcall, B -> A in pipe->pipe.

When rpc.gssd reads pipe to get the upcall msg corresponding to
service B from pipe->pipe and then writes the response, in
gss_pipe_downcall the msg corresponding to service A will be picked
because only uid is used to find the msg and it is before the one for
B in pipe->in_downcall.  And the process waiting for the msg
corresponding to service A will be woken up.

Actual scheduing of that process might be after rpc.gssd processes the
next msg.  In rpc_pipe_generic_upcall it clears msg->errno (for A).
The process is scheduled to see gss_msg->ctx == NULL and
gss_msg->msg.errno == 0, therefore it cannot break the loop in
gss_create_upcall and is never woken up after that.

This patch adds a simple check to ensure that a msg which is not
sent to rpc.gssd yet is not chosen as the matching upcall upon
receiving a downcall.

Signed-off-by: minoura makoto <minoura@valinux.co.jp>
Signed-off-by: Hiroshi Shimamoto <h-shimamoto@nec.com>
Tested-by: Hiroshi Shimamoto <h-shimamoto@nec.com>
Cc: Trond Myklebust <trondmy@hammerspace.com>
Fixes: 9130b8d ("SUNRPC: allow for upcalls for same uid but different gss service")
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Gelbpunkt pushed a commit to Kenvyra/android_kernel_xiaomi_sm6150 that referenced this pull request Feb 6, 2023
[ Upstream commit 6c4ca03bd890566d873e3593b32d034bf2f5a087 ]

During EEH error injection testing, a deadlock was encountered in the tg3
driver when tg3_io_error_detected() was attempting to cancel outstanding
reset tasks:

crash> foreach UN bt
...
PID: 159    TASK: c0000000067c6000  CPU: 8   COMMAND: "eehd"
...
 vantoman#5 [c00000000681f990] __cancel_work_timer at c00000000019fd18
 vantoman#6 [c00000000681fa30] tg3_io_error_detected at c00800000295f098 [tg3]
 vantoman#7 [c00000000681faf0] eeh_report_error at c00000000004e25c
...

PID: 290    TASK: c000000036e5f800  CPU: 6   COMMAND: "kworker/6:1"
...
 vantoman#4 [c00000003721fbc0] rtnl_lock at c000000000c940d8
 vantoman#5 [c00000003721fbe0] tg3_reset_task at c008000002969358 [tg3]
 vantoman#6 [c00000003721fc60] process_one_work at c00000000019e5c4
...

PID: 296    TASK: c000000037a65800  CPU: 21  COMMAND: "kworker/21:1"
...
 vantoman#4 [c000000037247bc0] rtnl_lock at c000000000c940d8
 vantoman#5 [c000000037247be0] tg3_reset_task at c008000002969358 [tg3]
 vantoman#6 [c000000037247c60] process_one_work at c00000000019e5c4
...

PID: 655    TASK: c000000036f49000  CPU: 16  COMMAND: "kworker/16:2"
...:1

 vantoman#4 [c0000000373ebbc0] rtnl_lock at c000000000c940d8
 vantoman#5 [c0000000373ebbe0] tg3_reset_task at c008000002969358 [tg3]
 vantoman#6 [c0000000373ebc60] process_one_work at c00000000019e5c4
...

Code inspection shows that both tg3_io_error_detected() and
tg3_reset_task() attempt to acquire the RTNL lock at the beginning of
their code blocks.  If tg3_reset_task() should happen to execute between
the times when tg3_io_error_deteced() acquires the RTNL lock and
tg3_reset_task_cancel() is called, a deadlock will occur.

Moving tg3_reset_task_cancel() call earlier within the code block, prior
to acquiring RTNL, prevents this from happening, but also exposes another
deadlock issue where tg3_reset_task() may execute AFTER
tg3_io_error_detected() has executed:

crash> foreach UN bt
PID: 159    TASK: c0000000067d2000  CPU: 9   COMMAND: "eehd"
...
 vantoman#4 [c000000006867a60] rtnl_lock at c000000000c940d8
 vantoman#5 [c000000006867a80] tg3_io_slot_reset at c0080000026c2ea8 [tg3]
 vantoman#6 [c000000006867b00] eeh_report_reset at c00000000004de88
...
PID: 363    TASK: c000000037564000  CPU: 6   COMMAND: "kworker/6:1"
...
 vantoman#3 [c000000036c1bb70] msleep at c000000000259e6c
 vantoman#4 [c000000036c1bba0] napi_disable at c000000000c6b848
 vantoman#5 [c000000036c1bbe0] tg3_reset_task at c0080000026d942c [tg3]
 vantoman#6 [c000000036c1bc60] process_one_work at c00000000019e5c4
...

This issue can be avoided by aborting tg3_reset_task() if EEH error
recovery is already in progress.

Fixes: db84bf4 ("tg3: tg3_reset_task() needs to use rtnl_lock to synchronize")
Signed-off-by: David Christensen <drc@linux.vnet.ibm.com>
Reviewed-by: Pavan Chebbi <pavan.chebbi@broadcom.com>
Link: https://lore.kernel.org/r/20230124185339.225806-1-drc@linux.vnet.ibm.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
helliscloser pushed a commit to helliscloser/kernel_xiaomi_sm6150 that referenced this pull request Mar 15, 2023
commit 60eed1e3d45045623e46944ebc7c42c30a4350f0 upstream.

code path:

ocfs2_ioctl_move_extents
 ocfs2_move_extents
  ocfs2_defrag_extent
   __ocfs2_move_extent
    + ocfs2_journal_access_di
    + ocfs2_split_extent  //sub-paths call jbd2_journal_restart
    + ocfs2_journal_dirty //crash by jbs2 ASSERT

crash stacks:

PID: 11297  TASK: ffff974a676dcd00  CPU: 67  COMMAND: "defragfs.ocfs2"
 #0 [ffffb25d8dad3900] machine_kexec at ffffffff8386fe01
 vantoman#1 [ffffb25d8dad3958] __crash_kexec at ffffffff8395959d
 vantoman#2 [ffffb25d8dad3a20] crash_kexec at ffffffff8395a45d
 vantoman#3 [ffffb25d8dad3a38] oops_end at ffffffff83836d3f
 vantoman#4 [ffffb25d8dad3a58] do_trap at ffffffff83833205
 vantoman#5 [ffffb25d8dad3aa0] do_invalid_op at ffffffff83833aa6
 vantoman#6 [ffffb25d8dad3ac0] invalid_op at ffffffff84200d18
    [exception RIP: jbd2_journal_dirty_metadata+0x2ba]
    RIP: ffffffffc09ca54a  RSP: ffffb25d8dad3b70  RFLAGS: 00010207
    RAX: 0000000000000000  RBX: ffff9706eedc5248  RCX: 0000000000000000
    RDX: 0000000000000001  RSI: ffff97337029ea28  RDI: ffff9706eedc5250
    RBP: ffff9703c3520200   R8: 000000000f46b0b2   R9: 0000000000000000
    R10: 0000000000000001  R11: 00000001000000fe  R12: ffff97337029ea28
    R13: 0000000000000000  R14: ffff9703de59bf60  R15: ffff9706eedc5250
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 vantoman#7 [ffffb25d8dad3ba8] ocfs2_journal_dirty at ffffffffc137fb95 [ocfs2]
 vantoman#8 [ffffb25d8dad3be8] __ocfs2_move_extent at ffffffffc139a950 [ocfs2]
 vantoman#9 [ffffb25d8dad3c80] ocfs2_defrag_extent at ffffffffc139b2d2 [ocfs2]

Analysis

This bug has the same root cause of 'commit 7f27ec9 ("ocfs2: call
ocfs2_journal_access_di() before ocfs2_journal_dirty() in
ocfs2_write_end_nolock()")'.  For this bug, jbd2_journal_restart() is
called by ocfs2_split_extent() during defragmenting.

How to fix

For ocfs2_split_extent() can handle journal operations totally by itself.
Caller doesn't need to call journal access/dirty pair, and caller only
needs to call journal start/stop pair.  The fix method is to remove
journal access/dirty from __ocfs2_move_extent().

The discussion for this patch:
https://oss.oracle.com/pipermail/ocfs2-devel/2023-February/000647.html

Link: https://lkml.kernel.org/r/20230217003717.32469-1-heming.zhao@suse.com
Signed-off-by: Heming Zhao <heming.zhao@suse.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
meloalfa159 pushed a commit to meloalfa159/kernel_xiaomi_sm6150 that referenced this pull request Sep 23, 2023
[ Upstream commit ade32bd8a738d7497ffe9743c46728db26740f78 ]

unix_tot_inflight is changed under spin_lock(unix_gc_lock), but
unix_release_sock() reads it locklessly.

Let's use READ_ONCE() for unix_tot_inflight.

Note that the writer side was marked by commit 9d6d7f1cb67c ("af_unix:
annote lockless accesses to unix_tot_inflight & gc_in_progress")

BUG: KCSAN: data-race in unix_inflight / unix_release_sock

write (marked) to 0xffffffff871852b8 of 4 bytes by task 123 on cpu 1:
 unix_inflight+0x130/0x180 net/unix/scm.c:64
 unix_attach_fds+0x137/0x1b0 net/unix/scm.c:123
 unix_scm_to_skb net/unix/af_unix.c:1832 [inline]
 unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1955
 sock_sendmsg_nosec net/socket.c:724 [inline]
 sock_sendmsg+0x148/0x160 net/socket.c:747
 ____sys_sendmsg+0x4e4/0x610 net/socket.c:2493
 ___sys_sendmsg+0xc6/0x140 net/socket.c:2547
 __sys_sendmsg+0x94/0x140 net/socket.c:2576
 __do_sys_sendmsg net/socket.c:2585 [inline]
 __se_sys_sendmsg net/socket.c:2583 [inline]
 __x64_sys_sendmsg+0x45/0x50 net/socket.c:2583
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x72/0xdc

read to 0xffffffff871852b8 of 4 bytes by task 4891 on cpu 0:
 unix_release_sock+0x608/0x910 net/unix/af_unix.c:671
 unix_release+0x59/0x80 net/unix/af_unix.c:1058
 __sock_release+0x7d/0x170 net/socket.c:653
 sock_close+0x19/0x30 net/socket.c:1385
 __fput+0x179/0x5e0 fs/file_table.c:321
 ____fput+0x15/0x20 fs/file_table.c:349
 task_work_run+0x116/0x1a0 kernel/task_work.c:179
 resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
 exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
 exit_to_user_mode_prepare+0x174/0x180 kernel/entry/common.c:204
 __syscall_exit_to_user_mode_work kernel/entry/common.c:286 [inline]
 syscall_exit_to_user_mode+0x1a/0x30 kernel/entry/common.c:297
 do_syscall_64+0x4b/0x90 arch/x86/entry/common.c:86
 entry_SYSCALL_64_after_hwframe+0x72/0xdc

value changed: 0x00000000 -> 0x00000001

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 4891 Comm: systemd-coredum Not tainted 6.4.0-rc5-01219-gfa0e21fa4443 vantoman#5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014

Fixes: 9305cfa ("[AF_UNIX]: Make unix_tot_inflight counter non-atomic")
Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
meloalfa159 pushed a commit to meloalfa159/kernel_xiaomi_sm6150 that referenced this pull request Oct 11, 2023
[ Upstream commit a154f5f643c6ecddd44847217a7a3845b4350003 ]

The following call trace shows a deadlock issue due to recursive locking of
mutex "device_mutex". First lock acquire is in target_for_each_device() and
second in target_free_device().

 PID: 148266   TASK: ffff8be21ffb5d00  CPU: 10   COMMAND: "iscsi_ttx"
  #0 [ffffa2bfc9ec3b18] __schedule at ffffffffa8060e7f
  vantoman#1 [ffffa2bfc9ec3ba0] schedule at ffffffffa8061224
  vantoman#2 [ffffa2bfc9ec3bb8] schedule_preempt_disabled at ffffffffa80615ee
  vantoman#3 [ffffa2bfc9ec3bc8] __mutex_lock at ffffffffa8062fd7
  vantoman#4 [ffffa2bfc9ec3c40] __mutex_lock_slowpath at ffffffffa80631d3
  vantoman#5 [ffffa2bfc9ec3c50] mutex_lock at ffffffffa806320c
  vantoman#6 [ffffa2bfc9ec3c68] target_free_device at ffffffffc0935998 [target_core_mod]
  vantoman#7 [ffffa2bfc9ec3c90] target_core_dev_release at ffffffffc092f975 [target_core_mod]
  vantoman#8 [ffffa2bfc9ec3ca0] config_item_put at ffffffffa79d250f
  vantoman#9 [ffffa2bfc9ec3cd0] config_item_put at ffffffffa79d2583
 vantoman#10 [ffffa2bfc9ec3ce0] target_devices_idr_iter at ffffffffc0933f3a [target_core_mod]
 vantoman#11 [ffffa2bfc9ec3d00] idr_for_each at ffffffffa803f6fc
 vantoman#12 [ffffa2bfc9ec3d60] target_for_each_device at ffffffffc0935670 [target_core_mod]
 vantoman#13 [ffffa2bfc9ec3d98] transport_deregister_session at ffffffffc0946408 [target_core_mod]
 vantoman#14 [ffffa2bfc9ec3dc8] iscsit_close_session at ffffffffc09a44a6 [iscsi_target_mod]
 vantoman#15 [ffffa2bfc9ec3df0] iscsit_close_connection at ffffffffc09a4a88 [iscsi_target_mod]
 vantoman#16 [ffffa2bfc9ec3df8] finish_task_switch at ffffffffa76e5d07
 vantoman#17 [ffffa2bfc9ec3e78] iscsit_take_action_for_connection_exit at ffffffffc0991c23 [iscsi_target_mod]
 #18 [ffffa2bfc9ec3ea0] iscsi_target_tx_thread at ffffffffc09a403b [iscsi_target_mod]
 #19 [ffffa2bfc9ec3f08] kthread at ffffffffa76d8080
 #20 [ffffa2bfc9ec3f50] ret_from_fork at ffffffffa8200364

Fixes: 36d4cb4 ("scsi: target: Avoid that EXTENDED COPY commands trigger lock inversion")
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Link: https://lore.kernel.org/r/20230918225848.66463-1-junxiao.bi@oracle.com
Reviewed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
meloalfa159 pushed a commit to meloalfa159/kernel_xiaomi_sm6150 that referenced this pull request May 8, 2024
[ Upstream commit 14694179e561b5f2f7e56a0f590e2cb49a9cc7ab ]

Trying to suspend to RAM on SAMA5D27 EVK leads to the following lockdep
warning:

 ============================================
 WARNING: possible recursive locking detected
 6.7.0-rc5-wt+ #532 Not tainted
 --------------------------------------------
 sh/92 is trying to acquire lock:
 c3cf306c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 but task is already holding lock:
 c3d7c46c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 other info that might help us debug this:
  Possible unsafe locking scenario:

        CPU0
        ----
   lock(&irq_desc_lock_class);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

  May be due to missing lock nesting notation

 6 locks held by sh/92:
  #0: c3aa0258 (sb_writers#6){.+.+}-{0:0}, at: ksys_write+0xd8/0x178
  vantoman#1: c4c2df44 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x138/0x284
  vantoman#2: c32684a0 (kn->active){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x148/0x284
  vantoman#3: c232b6d4 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x13c/0x4e8
  vantoman#4: c387b088 (&dev->mutex){....}-{3:3}, at: __device_suspend+0x1e8/0x91c
  vantoman#5: c3d7c46c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 stack backtrace:
 CPU: 0 PID: 92 Comm: sh Not tainted 6.7.0-rc5-wt+ #532
 Hardware name: Atmel SAMA5
  unwind_backtrace from show_stack+0x18/0x1c
  show_stack from dump_stack_lvl+0x34/0x48
  dump_stack_lvl from __lock_acquire+0x19ec/0x3a0c
  __lock_acquire from lock_acquire.part.0+0x124/0x2d0
  lock_acquire.part.0 from _raw_spin_lock_irqsave+0x5c/0x78
  _raw_spin_lock_irqsave from __irq_get_desc_lock+0xe8/0x100
  __irq_get_desc_lock from irq_set_irq_wake+0xa8/0x204
  irq_set_irq_wake from atmel_gpio_irq_set_wake+0x58/0xb4
  atmel_gpio_irq_set_wake from irq_set_irq_wake+0x100/0x204
  irq_set_irq_wake from gpio_keys_suspend+0xec/0x2b8
  gpio_keys_suspend from dpm_run_callback+0xe4/0x248
  dpm_run_callback from __device_suspend+0x234/0x91c
  __device_suspend from dpm_suspend+0x224/0x43c
  dpm_suspend from dpm_suspend_start+0x9c/0xa8
  dpm_suspend_start from suspend_devices_and_enter+0x1e0/0xa84
  suspend_devices_and_enter from pm_suspend+0x460/0x4e8
  pm_suspend from state_store+0x78/0xe4
  state_store from kernfs_fop_write_iter+0x1a0/0x284
  kernfs_fop_write_iter from vfs_write+0x38c/0x6f4
  vfs_write from ksys_write+0xd8/0x178
  ksys_write from ret_fast_syscall+0x0/0x1c
 Exception stack(0xc52b3fa8 to 0xc52b3ff0)
 3fa0:                   00000004 005a0ae8 00000001 005a0ae8 00000004 00000001
 3fc0: 00000004 005a0ae8 00000001 00000004 00000004 b6c616c0 00000020 0059d190
 3fe0: 00000004 b6c61678 aec5a041 aebf1a26

This warning is raised because pinctrl-at91-pio4 uses chained IRQ. Whenever
a wake up source configures an IRQ through irq_set_irq_wake, it will
lock the corresponding IRQ desc, and then call irq_set_irq_wake on "parent"
IRQ which will do the same on its own IRQ desc, but since those two locks
share the same class, lockdep reports this as an issue.

Fix lockdep false positive by setting a different class for parent and
children IRQ

Fixes: 7761808 ("pinctrl: introduce driver for Atmel PIO4 controller")
Signed-off-by: Alexis Lothoré <alexis.lothore@bootlin.com>
Link: https://lore.kernel.org/r/20231215-lockdep_warning-v1-1-8137b2510ed5@bootlin.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Harshit Mogalapalli <harshit.m.mogalapalli@oracle.com>
meloalfa159 pushed a commit to meloalfa159/kernel_xiaomi_sm6150 that referenced this pull request May 11, 2024
[ Upstream commit 14694179e561b5f2f7e56a0f590e2cb49a9cc7ab ]

Trying to suspend to RAM on SAMA5D27 EVK leads to the following lockdep
warning:

 ============================================
 WARNING: possible recursive locking detected
 6.7.0-rc5-wt+ #532 Not tainted
 --------------------------------------------
 sh/92 is trying to acquire lock:
 c3cf306c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 but task is already holding lock:
 c3d7c46c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 other info that might help us debug this:
  Possible unsafe locking scenario:

        CPU0
        ----
   lock(&irq_desc_lock_class);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

  May be due to missing lock nesting notation

 6 locks held by sh/92:
  #0: c3aa0258 (sb_writers#6){.+.+}-{0:0}, at: ksys_write+0xd8/0x178
  vantoman#1: c4c2df44 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0x138/0x284
  vantoman#2: c32684a0 (kn->active){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x148/0x284
  vantoman#3: c232b6d4 (system_transition_mutex){+.+.}-{3:3}, at: pm_suspend+0x13c/0x4e8
  vantoman#4: c387b088 (&dev->mutex){....}-{3:3}, at: __device_suspend+0x1e8/0x91c
  vantoman#5: c3d7c46c (&irq_desc_lock_class){-.-.}-{2:2}, at: __irq_get_desc_lock+0xe8/0x100

 stack backtrace:
 CPU: 0 PID: 92 Comm: sh Not tainted 6.7.0-rc5-wt+ #532
 Hardware name: Atmel SAMA5
  unwind_backtrace from show_stack+0x18/0x1c
  show_stack from dump_stack_lvl+0x34/0x48
  dump_stack_lvl from __lock_acquire+0x19ec/0x3a0c
  __lock_acquire from lock_acquire.part.0+0x124/0x2d0
  lock_acquire.part.0 from _raw_spin_lock_irqsave+0x5c/0x78
  _raw_spin_lock_irqsave from __irq_get_desc_lock+0xe8/0x100
  __irq_get_desc_lock from irq_set_irq_wake+0xa8/0x204
  irq_set_irq_wake from atmel_gpio_irq_set_wake+0x58/0xb4
  atmel_gpio_irq_set_wake from irq_set_irq_wake+0x100/0x204
  irq_set_irq_wake from gpio_keys_suspend+0xec/0x2b8
  gpio_keys_suspend from dpm_run_callback+0xe4/0x248
  dpm_run_callback from __device_suspend+0x234/0x91c
  __device_suspend from dpm_suspend+0x224/0x43c
  dpm_suspend from dpm_suspend_start+0x9c/0xa8
  dpm_suspend_start from suspend_devices_and_enter+0x1e0/0xa84
  suspend_devices_and_enter from pm_suspend+0x460/0x4e8
  pm_suspend from state_store+0x78/0xe4
  state_store from kernfs_fop_write_iter+0x1a0/0x284
  kernfs_fop_write_iter from vfs_write+0x38c/0x6f4
  vfs_write from ksys_write+0xd8/0x178
  ksys_write from ret_fast_syscall+0x0/0x1c
 Exception stack(0xc52b3fa8 to 0xc52b3ff0)
 3fa0:                   00000004 005a0ae8 00000001 005a0ae8 00000004 00000001
 3fc0: 00000004 005a0ae8 00000001 00000004 00000004 b6c616c0 00000020 0059d190
 3fe0: 00000004 b6c61678 aec5a041 aebf1a26

This warning is raised because pinctrl-at91-pio4 uses chained IRQ. Whenever
a wake up source configures an IRQ through irq_set_irq_wake, it will
lock the corresponding IRQ desc, and then call irq_set_irq_wake on "parent"
IRQ which will do the same on its own IRQ desc, but since those two locks
share the same class, lockdep reports this as an issue.

Fix lockdep false positive by setting a different class for parent and
children IRQ

Fixes: 7761808 ("pinctrl: introduce driver for Atmel PIO4 controller")
Signed-off-by: Alexis Lothoré <alexis.lothore@bootlin.com>
Link: https://lore.kernel.org/r/20231215-lockdep_warning-v1-1-8137b2510ed5@bootlin.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Harshit Mogalapalli <harshit.m.mogalapalli@oracle.com>
danya2271 pushed a commit to danya2271/android_kernel_xiaomi_sm6150 that referenced this pull request May 30, 2024
We don't need to hold the local pinctrl lock here to set irq wake on the
summary irq line. Doing so only leads to lockdep warnings instead of
protecting us from anything. Remove the locking.

 WARNING: possible circular locking dependency detected
 5.4.11 vantoman#2 Tainted: G        W
 ------------------------------------------------------
 cat/3083 is trying to acquire lock:
 ffffff81f4fa58c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> vantoman#1 (&pctrl->lock){-.-.}:
        _raw_spin_lock_irqsave+0x64/0x80
        msm_gpio_irq_ack+0x68/0xf4
        __irq_do_set_handler+0xe0/0x180
        __irq_set_handler+0x60/0x9c
        irq_domain_set_info+0x90/0xb4
        gpiochip_hierarchy_irq_domain_alloc+0x110/0x200
        __irq_domain_alloc_irqs+0x130/0x29c
        irq_create_fwspec_mapping+0x1f0/0x300
        irq_create_of_mapping+0x70/0x98
        of_irq_get+0xa4/0xd4
        spi_drv_probe+0x4c/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        __device_attach_driver+0x9c/0x110
        bus_for_each_drv+0x88/0xd0
        __device_attach+0xb0/0x160
        device_initial_probe+0x20/0x2c
        bus_probe_device+0x34/0x94
        device_add+0x35c/0x3f0
        spi_add_device+0xbc/0x194
        of_register_spi_devices+0x2c8/0x408
        spi_register_controller+0x57c/0x6fc
        spi_geni_probe+0x260/0x328
        platform_drv_probe+0x90/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        device_driver_attach+0x4c/0x6c
        __driver_attach+0xcc/0x154
        bus_for_each_dev+0x84/0xcc
        driver_attach+0x2c/0x38
        bus_add_driver+0x108/0x1fc
        driver_register+0x64/0xf8
        __platform_driver_register+0x4c/0x58
        spi_geni_driver_init+0x1c/0x24
        do_one_initcall+0x1a4/0x3e8
        do_initcall_level+0xb4/0xcc
        do_basic_setup+0x30/0x48
        kernel_init_freeable+0x124/0x1a8
        kernel_init+0x14/0x100
        ret_from_fork+0x10/0x18

 -> #0 (&irq_desc_lock_class){-.-.}:
        __lock_acquire+0xeb4/0x2388
        lock_acquire+0x1cc/0x210
        _raw_spin_lock_irqsave+0x64/0x80
        __irq_get_desc_lock+0x64/0x94
        irq_set_irq_wake+0x40/0x144
        msm_gpio_irq_set_wake+0x5c/0x7c
        set_irq_wake_real+0x40/0x5c
        irq_set_irq_wake+0x70/0x144
        cros_ec_rtc_suspend+0x38/0x4c
        platform_pm_suspend+0x34/0x60
        dpm_run_callback+0x64/0xcc
        __device_suspend+0x310/0x41c
        dpm_suspend+0xf8/0x298
        dpm_suspend_start+0x84/0xb4
        suspend_devices_and_enter+0xbc/0x620
        pm_suspend+0x210/0x348
        state_store+0xb0/0x108
        kobj_attr_store+0x14/0x24
        sysfs_kf_write+0x4c/0x64
        kernfs_fop_write+0x15c/0x1fc
        __vfs_write+0x54/0x18c
        vfs_write+0xe4/0x1a4
        ksys_write+0x7c/0xe4
        __arm64_sys_write+0x20/0x2c
        el0_svc_common+0xa8/0x160
        el0_svc_handler+0x7c/0x98
        el0_svc+0x8/0xc

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&pctrl->lock);
                                lock(&irq_desc_lock_class);
                                lock(&pctrl->lock);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

 7 locks held by cat/3083:
  #0: ffffff81f06d1420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  vantoman#1: ffffff81c8935680 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  vantoman#2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  vantoman#3: ffffffe89a641d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  vantoman#4: ffffff81f190e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  vantoman#5: ffffff81f183d8c0 (lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  vantoman#6: ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 3083 Comm: cat Tainted: G        W         5.4.11 vantoman#2
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  print_circular_bug+0x2ac/0x2c4
  check_noncircular+0x1a0/0x1a8
  __lock_acquire+0xeb4/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Fixes: 6aced33 ("pinctrl: msm: drop wake_irqs bitmap")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121180950.36959-1-swboyd@chromium.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ahmad Thoriq Najahi <najahi@chips-projects.xyz>
danya2271 pushed a commit to danya2271/android_kernel_xiaomi_sm6150 that referenced this pull request May 30, 2024
We don't need to hold the local pinctrl lock here to set irq wake on the
summary irq line. Doing so only leads to lockdep warnings instead of
protecting us from anything. Remove the locking.

 WARNING: possible circular locking dependency detected
 5.4.11 vantoman#2 Tainted: G        W
 ------------------------------------------------------
 cat/3083 is trying to acquire lock:
 ffffff81f4fa58c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> vantoman#1 (&pctrl->lock){-.-.}:
        _raw_spin_lock_irqsave+0x64/0x80
        msm_gpio_irq_ack+0x68/0xf4
        __irq_do_set_handler+0xe0/0x180
        __irq_set_handler+0x60/0x9c
        irq_domain_set_info+0x90/0xb4
        gpiochip_hierarchy_irq_domain_alloc+0x110/0x200
        __irq_domain_alloc_irqs+0x130/0x29c
        irq_create_fwspec_mapping+0x1f0/0x300
        irq_create_of_mapping+0x70/0x98
        of_irq_get+0xa4/0xd4
        spi_drv_probe+0x4c/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        __device_attach_driver+0x9c/0x110
        bus_for_each_drv+0x88/0xd0
        __device_attach+0xb0/0x160
        device_initial_probe+0x20/0x2c
        bus_probe_device+0x34/0x94
        device_add+0x35c/0x3f0
        spi_add_device+0xbc/0x194
        of_register_spi_devices+0x2c8/0x408
        spi_register_controller+0x57c/0x6fc
        spi_geni_probe+0x260/0x328
        platform_drv_probe+0x90/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        device_driver_attach+0x4c/0x6c
        __driver_attach+0xcc/0x154
        bus_for_each_dev+0x84/0xcc
        driver_attach+0x2c/0x38
        bus_add_driver+0x108/0x1fc
        driver_register+0x64/0xf8
        __platform_driver_register+0x4c/0x58
        spi_geni_driver_init+0x1c/0x24
        do_one_initcall+0x1a4/0x3e8
        do_initcall_level+0xb4/0xcc
        do_basic_setup+0x30/0x48
        kernel_init_freeable+0x124/0x1a8
        kernel_init+0x14/0x100
        ret_from_fork+0x10/0x18

 -> #0 (&irq_desc_lock_class){-.-.}:
        __lock_acquire+0xeb4/0x2388
        lock_acquire+0x1cc/0x210
        _raw_spin_lock_irqsave+0x64/0x80
        __irq_get_desc_lock+0x64/0x94
        irq_set_irq_wake+0x40/0x144
        msm_gpio_irq_set_wake+0x5c/0x7c
        set_irq_wake_real+0x40/0x5c
        irq_set_irq_wake+0x70/0x144
        cros_ec_rtc_suspend+0x38/0x4c
        platform_pm_suspend+0x34/0x60
        dpm_run_callback+0x64/0xcc
        __device_suspend+0x310/0x41c
        dpm_suspend+0xf8/0x298
        dpm_suspend_start+0x84/0xb4
        suspend_devices_and_enter+0xbc/0x620
        pm_suspend+0x210/0x348
        state_store+0xb0/0x108
        kobj_attr_store+0x14/0x24
        sysfs_kf_write+0x4c/0x64
        kernfs_fop_write+0x15c/0x1fc
        __vfs_write+0x54/0x18c
        vfs_write+0xe4/0x1a4
        ksys_write+0x7c/0xe4
        __arm64_sys_write+0x20/0x2c
        el0_svc_common+0xa8/0x160
        el0_svc_handler+0x7c/0x98
        el0_svc+0x8/0xc

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&pctrl->lock);
                                lock(&irq_desc_lock_class);
                                lock(&pctrl->lock);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

 7 locks held by cat/3083:
  #0: ffffff81f06d1420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  vantoman#1: ffffff81c8935680 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  vantoman#2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  vantoman#3: ffffffe89a641d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  vantoman#4: ffffff81f190e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  vantoman#5: ffffff81f183d8c0 (lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  vantoman#6: ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 3083 Comm: cat Tainted: G        W         5.4.11 vantoman#2
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  print_circular_bug+0x2ac/0x2c4
  check_noncircular+0x1a0/0x1a8
  __lock_acquire+0xeb4/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Fixes: 6aced33 ("pinctrl: msm: drop wake_irqs bitmap")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121180950.36959-1-swboyd@chromium.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ahmad Thoriq Najahi <najahi@chips-projects.xyz>
danya2271 pushed a commit to danya2271/android_kernel_xiaomi_sm6150 that referenced this pull request May 30, 2024
We don't need to hold the local pinctrl lock here to set irq wake on the
summary irq line. Doing so only leads to lockdep warnings instead of
protecting us from anything. Remove the locking.

 WARNING: possible circular locking dependency detected
 5.4.11 vantoman#2 Tainted: G        W
 ------------------------------------------------------
 cat/3083 is trying to acquire lock:
 ffffff81f4fa58c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> vantoman#1 (&pctrl->lock){-.-.}:
        _raw_spin_lock_irqsave+0x64/0x80
        msm_gpio_irq_ack+0x68/0xf4
        __irq_do_set_handler+0xe0/0x180
        __irq_set_handler+0x60/0x9c
        irq_domain_set_info+0x90/0xb4
        gpiochip_hierarchy_irq_domain_alloc+0x110/0x200
        __irq_domain_alloc_irqs+0x130/0x29c
        irq_create_fwspec_mapping+0x1f0/0x300
        irq_create_of_mapping+0x70/0x98
        of_irq_get+0xa4/0xd4
        spi_drv_probe+0x4c/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        __device_attach_driver+0x9c/0x110
        bus_for_each_drv+0x88/0xd0
        __device_attach+0xb0/0x160
        device_initial_probe+0x20/0x2c
        bus_probe_device+0x34/0x94
        device_add+0x35c/0x3f0
        spi_add_device+0xbc/0x194
        of_register_spi_devices+0x2c8/0x408
        spi_register_controller+0x57c/0x6fc
        spi_geni_probe+0x260/0x328
        platform_drv_probe+0x90/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        device_driver_attach+0x4c/0x6c
        __driver_attach+0xcc/0x154
        bus_for_each_dev+0x84/0xcc
        driver_attach+0x2c/0x38
        bus_add_driver+0x108/0x1fc
        driver_register+0x64/0xf8
        __platform_driver_register+0x4c/0x58
        spi_geni_driver_init+0x1c/0x24
        do_one_initcall+0x1a4/0x3e8
        do_initcall_level+0xb4/0xcc
        do_basic_setup+0x30/0x48
        kernel_init_freeable+0x124/0x1a8
        kernel_init+0x14/0x100
        ret_from_fork+0x10/0x18

 -> #0 (&irq_desc_lock_class){-.-.}:
        __lock_acquire+0xeb4/0x2388
        lock_acquire+0x1cc/0x210
        _raw_spin_lock_irqsave+0x64/0x80
        __irq_get_desc_lock+0x64/0x94
        irq_set_irq_wake+0x40/0x144
        msm_gpio_irq_set_wake+0x5c/0x7c
        set_irq_wake_real+0x40/0x5c
        irq_set_irq_wake+0x70/0x144
        cros_ec_rtc_suspend+0x38/0x4c
        platform_pm_suspend+0x34/0x60
        dpm_run_callback+0x64/0xcc
        __device_suspend+0x310/0x41c
        dpm_suspend+0xf8/0x298
        dpm_suspend_start+0x84/0xb4
        suspend_devices_and_enter+0xbc/0x620
        pm_suspend+0x210/0x348
        state_store+0xb0/0x108
        kobj_attr_store+0x14/0x24
        sysfs_kf_write+0x4c/0x64
        kernfs_fop_write+0x15c/0x1fc
        __vfs_write+0x54/0x18c
        vfs_write+0xe4/0x1a4
        ksys_write+0x7c/0xe4
        __arm64_sys_write+0x20/0x2c
        el0_svc_common+0xa8/0x160
        el0_svc_handler+0x7c/0x98
        el0_svc+0x8/0xc

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&pctrl->lock);
                                lock(&irq_desc_lock_class);
                                lock(&pctrl->lock);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

 7 locks held by cat/3083:
  #0: ffffff81f06d1420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  vantoman#1: ffffff81c8935680 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  vantoman#2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  vantoman#3: ffffffe89a641d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  vantoman#4: ffffff81f190e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  vantoman#5: ffffff81f183d8c0 (lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  vantoman#6: ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 3083 Comm: cat Tainted: G        W         5.4.11 vantoman#2
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  print_circular_bug+0x2ac/0x2c4
  check_noncircular+0x1a0/0x1a8
  __lock_acquire+0xeb4/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Fixes: 6aced33 ("pinctrl: msm: drop wake_irqs bitmap")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121180950.36959-1-swboyd@chromium.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ahmad Thoriq Najahi <najahi@chips-projects.xyz>
danya2271 pushed a commit to danya2271/android_kernel_xiaomi_sm6150 that referenced this pull request May 31, 2024
We don't need to hold the local pinctrl lock here to set irq wake on the
summary irq line. Doing so only leads to lockdep warnings instead of
protecting us from anything. Remove the locking.

 WARNING: possible circular locking dependency detected
 5.4.11 vantoman#2 Tainted: G        W
 ------------------------------------------------------
 cat/3083 is trying to acquire lock:
 ffffff81f4fa58c0 (&irq_desc_lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94

 but task is already holding lock:
 ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> vantoman#1 (&pctrl->lock){-.-.}:
        _raw_spin_lock_irqsave+0x64/0x80
        msm_gpio_irq_ack+0x68/0xf4
        __irq_do_set_handler+0xe0/0x180
        __irq_set_handler+0x60/0x9c
        irq_domain_set_info+0x90/0xb4
        gpiochip_hierarchy_irq_domain_alloc+0x110/0x200
        __irq_domain_alloc_irqs+0x130/0x29c
        irq_create_fwspec_mapping+0x1f0/0x300
        irq_create_of_mapping+0x70/0x98
        of_irq_get+0xa4/0xd4
        spi_drv_probe+0x4c/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        __device_attach_driver+0x9c/0x110
        bus_for_each_drv+0x88/0xd0
        __device_attach+0xb0/0x160
        device_initial_probe+0x20/0x2c
        bus_probe_device+0x34/0x94
        device_add+0x35c/0x3f0
        spi_add_device+0xbc/0x194
        of_register_spi_devices+0x2c8/0x408
        spi_register_controller+0x57c/0x6fc
        spi_geni_probe+0x260/0x328
        platform_drv_probe+0x90/0xb0
        really_probe+0x138/0x3f0
        driver_probe_device+0x70/0x140
        device_driver_attach+0x4c/0x6c
        __driver_attach+0xcc/0x154
        bus_for_each_dev+0x84/0xcc
        driver_attach+0x2c/0x38
        bus_add_driver+0x108/0x1fc
        driver_register+0x64/0xf8
        __platform_driver_register+0x4c/0x58
        spi_geni_driver_init+0x1c/0x24
        do_one_initcall+0x1a4/0x3e8
        do_initcall_level+0xb4/0xcc
        do_basic_setup+0x30/0x48
        kernel_init_freeable+0x124/0x1a8
        kernel_init+0x14/0x100
        ret_from_fork+0x10/0x18

 -> #0 (&irq_desc_lock_class){-.-.}:
        __lock_acquire+0xeb4/0x2388
        lock_acquire+0x1cc/0x210
        _raw_spin_lock_irqsave+0x64/0x80
        __irq_get_desc_lock+0x64/0x94
        irq_set_irq_wake+0x40/0x144
        msm_gpio_irq_set_wake+0x5c/0x7c
        set_irq_wake_real+0x40/0x5c
        irq_set_irq_wake+0x70/0x144
        cros_ec_rtc_suspend+0x38/0x4c
        platform_pm_suspend+0x34/0x60
        dpm_run_callback+0x64/0xcc
        __device_suspend+0x310/0x41c
        dpm_suspend+0xf8/0x298
        dpm_suspend_start+0x84/0xb4
        suspend_devices_and_enter+0xbc/0x620
        pm_suspend+0x210/0x348
        state_store+0xb0/0x108
        kobj_attr_store+0x14/0x24
        sysfs_kf_write+0x4c/0x64
        kernfs_fop_write+0x15c/0x1fc
        __vfs_write+0x54/0x18c
        vfs_write+0xe4/0x1a4
        ksys_write+0x7c/0xe4
        __arm64_sys_write+0x20/0x2c
        el0_svc_common+0xa8/0x160
        el0_svc_handler+0x7c/0x98
        el0_svc+0x8/0xc

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(&pctrl->lock);
                                lock(&irq_desc_lock_class);
                                lock(&pctrl->lock);
   lock(&irq_desc_lock_class);

  *** DEADLOCK ***

 7 locks held by cat/3083:
  #0: ffffff81f06d1420 (sb_writers#7){.+.+}, at: vfs_write+0xd0/0x1a4
  vantoman#1: ffffff81c8935680 (&of->mutex){+.+.}, at: kernfs_fop_write+0x12c/0x1fc
  vantoman#2: ffffff81f4c322f0 (kn->count#337){.+.+}, at: kernfs_fop_write+0x134/0x1fc
  vantoman#3: ffffffe89a641d60 (system_transition_mutex){+.+.}, at: pm_suspend+0x108/0x348
  vantoman#4: ffffff81f190e970 (&dev->mutex){....}, at: __device_suspend+0x168/0x41c
  vantoman#5: ffffff81f183d8c0 (lock_class){-.-.}, at: __irq_get_desc_lock+0x64/0x94
  vantoman#6: ffffff81f4880c18 (&pctrl->lock){-.-.}, at: msm_gpio_irq_set_wake+0x48/0x7c

 stack backtrace:
 CPU: 4 PID: 3083 Comm: cat Tainted: G        W         5.4.11 vantoman#2
 Hardware name: Google Cheza (rev3+) (DT)
 Call trace:
  dump_backtrace+0x0/0x174
  show_stack+0x20/0x2c
  dump_stack+0xc8/0x124
  print_circular_bug+0x2ac/0x2c4
  check_noncircular+0x1a0/0x1a8
  __lock_acquire+0xeb4/0x2388
  lock_acquire+0x1cc/0x210
  _raw_spin_lock_irqsave+0x64/0x80
  __irq_get_desc_lock+0x64/0x94
  irq_set_irq_wake+0x40/0x144
  msm_gpio_irq_set_wake+0x5c/0x7c
  set_irq_wake_real+0x40/0x5c
  irq_set_irq_wake+0x70/0x144
  cros_ec_rtc_suspend+0x38/0x4c
  platform_pm_suspend+0x34/0x60
  dpm_run_callback+0x64/0xcc
  __device_suspend+0x310/0x41c
  dpm_suspend+0xf8/0x298
  dpm_suspend_start+0x84/0xb4
  suspend_devices_and_enter+0xbc/0x620
  pm_suspend+0x210/0x348
  state_store+0xb0/0x108
  kobj_attr_store+0x14/0x24
  sysfs_kf_write+0x4c/0x64
  kernfs_fop_write+0x15c/0x1fc
  __vfs_write+0x54/0x18c
  vfs_write+0xe4/0x1a4
  ksys_write+0x7c/0xe4
  __arm64_sys_write+0x20/0x2c
  el0_svc_common+0xa8/0x160
  el0_svc_handler+0x7c/0x98
  el0_svc+0x8/0xc

Fixes: 6aced33 ("pinctrl: msm: drop wake_irqs bitmap")
Cc: Douglas Anderson <dianders@chromium.org>
Cc: Brian Masney <masneyb@onstation.org>
Cc: Lina Iyer <ilina@codeaurora.org>
Cc: Maulik Shah <mkshah@codeaurora.org>
Signed-off-by: Stephen Boyd <swboyd@chromium.org>
Link: https://lore.kernel.org/r/20200121180950.36959-1-swboyd@chromium.org
Reviewed-by: Bjorn Andersson <bjorn.andersson@linaro.org>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Ahmad Thoriq Najahi <najahi@chips-projects.xyz>
meloalfa159 pushed a commit to meloalfa159/kernel_xiaomi_sm6150 that referenced this pull request Jun 15, 2024
[ Upstream commit f8bbc07ac535593139c875ffa19af924b1084540 ]

vhost_worker will call tun call backs to receive packets. If too many
illegal packets arrives, tun_do_read will keep dumping packet contents.
When console is enabled, it will costs much more cpu time to dump
packet and soft lockup will be detected.

net_ratelimit mechanism can be used to limit the dumping rate.

PID: 33036    TASK: ffff949da6f20000  CPU: 23   COMMAND: "vhost-32980"
 #0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253
 vantoman#1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3
 vantoman#2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e
 vantoman#3 [fffffe00003fced0] do_nmi at ffffffff8922660d
 vantoman#4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663
    [exception RIP: io_serial_in+20]
    RIP: ffffffff89792594  RSP: ffffa655314979e8  RFLAGS: 00000002
    RAX: ffffffff89792500  RBX: ffffffff8af428a0  RCX: 0000000000000000
    RDX: 00000000000003fd  RSI: 0000000000000005  RDI: ffffffff8af428a0
    RBP: 0000000000002710   R8: 0000000000000004   R9: 000000000000000f
    R10: 0000000000000000  R11: ffffffff8acbf64f  R12: 0000000000000020
    R13: ffffffff8acbf698  R14: 0000000000000058  R15: 0000000000000000
    ORIG_RAX: ffffffffffffffff  CS: 0010  SS: 0018
 vantoman#5 [ffffa655314979e8] io_serial_in at ffffffff89792594
 vantoman#6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470
 vantoman#7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6
 vantoman#8 [ffffa65531497a20] uart_console_write at ffffffff8978b605
 vantoman#9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558
 vantoman#10 [ffffa65531497ac8] console_unlock at ffffffff89316124
 vantoman#11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07
 vantoman#12 [ffffa65531497b68] printk at ffffffff89318306
 vantoman#13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765
 vantoman#14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun]
 vantoman#15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun]
 vantoman#16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net]
 vantoman#17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost]
 #18 [ffffa65531497f10] kthread at ffffffff892d2e72
 #19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f

Fixes: ef3db4a ("tun: avoid BUG, dump packet on GSO errors")
Signed-off-by: Lei Chen <lei.chen@smartx.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Acked-by: Jason Wang <jasowang@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Link: https://lore.kernel.org/r/20240415020247.2207781-1-lei.chen@smartx.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
(cherry picked from commit 68459b8e3ee554ce71878af9eb69659b9462c588)
Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

None yet

1 participant