Skip to content

CatNet: Class Incremental 3D ConvNets for Lifelong Egocentric Gesture Recognition

License

Notifications You must be signed in to change notification settings

villawang/CatNet

Repository files navigation

CatNet

Implementation of our paper CatNet: Class Incremental 3D ConvNets for Lifelong Egocentric Gesture Recognition

Requirements

Docker file is provided in the CatNet.Dockerfile.
Python3
torch==1.2
torchvision==0.4.0
scipy
pillow==6.2.1
sklearn
tqdm
torchsummary
matplotlib
opencv-python-headless
pandas
scikit-image

Usage

  • Create annotation files for EgoGesture

    Change the frame_path and label_path to your own path in the create_annotation.py
    python3 create_annotation.py
    EgoGesture dataset folder structure
    |
    |-frames
    |–--Subject01
    |--- ......
    |-labels
    |---Subject01
    |--- .....
    
  • Train task0 model

For ResNext-101-32
python3 train_R3D_task0.py --is_train True --n_frames_per_clip 32 --pretrain_path models/pretrained_models/jester_resnext_101_RGB_32.pth --modality Depth (RGB or RGB-D)

For ResNext-101-16
python3 train_R3D_task0.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnext-101-kinetics.pth --modality Depth (RGB or RGB-D)

For ResNet-50-16
python3 train_R3D_task0.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnet-50-kinetics.pth --arch resnet-50 --model resnet --model_depth 50 --modality Depth (RGB or RGB-D)
  • Evaluate task0 model Leave the arg is_train as the default above the code

  • Train CatNet

For ResNext-101-32
python3 train_R3D_CatNet.py --is_train True --n_frames_per_clip 32 --pretrain_path models/pretrained_models/jester_resnext_101_RGB_32.pth --modality Depth (RGB or RGB-D)

For ResNext-101-16
python3 train_R3D_CatNet.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnext-101-kinetics.pth --modality Depth (RGB or RGB-D)

For ResNet-50-16
python3 train_R3D_CatNet.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnet-50-kinetics.pth --arch resnet-50 --model resnet --model_depth 50 --modality Depth (RGB or RGB-D)
  • Evaluate CatNet of modality Depth, RGB or RGB-D
For ResNext-101-32
python3 evaluate_CatNet.py --is_train True --n_frames_per_clip 32 --pretrain_path models/pretrained_models/jester_resnext_101_RGB_32.pth --modality Depth (RGB or RGB-D)

For ResNext-101-16
python3 evaluate_CatNet.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnext-101-kinetics.pth --modality Depth (RGB or RGB-D)

For ResNet-50-16
python3 evaluate_CatNet.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnet-50-kinetics.pth --arch resnet-50 --model resnet --model_depth 50 --modality Depth (RGB or RGB-D)
  • Evaluate CatNet using Two-Stream
For ResNext-101-32
python3 evaluate_CatNet_TwoStream.py --is_train True --n_frames_per_clip 32 --pretrain_path models/pretrained_models/jester_resnext_101_RGB_32.pth --modality Depth (RGB or RGB-D)

For ResNext-101-16
python3 evaluate_CatNet_TwoStream.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnext-101-kinetics.pth --modality Depth (RGB or RGB-D)

For ResNet-50-16
python3 evaluate_CatNet_TwoStream.py --is_train True --n_frames_per_clip 16 --pretrain_path models/pretrained_models/resnet-50-kinetics.pth --arch resnet-50 --model resnet --model_depth 50 --modality Depth (RGB or RGB-D)

Pre-trained model

  • Move all these models to the folder models
    pretrained_models
    task0_model
    CatNet pretrained-model

  • Pretrained_models are used for initialize training task0. Task0_model is used for initializing traininig the CatNet. Due to CatNet_pretrained model is very large, we only proved the CatNet trained using ResNext-101-32. It will take lots of memory. You can reduce the cached sample setting in the train_R3D_CatNet.py if your machine does not have so much memory, performance may decrease according to the less cached samples.

Acknowledgement

We thank Kensho Hara for releasing 3D-ResNets-PyTorch Repo and Okan Köpüklü for releasing Real-time-GesRec Repo, which we build our work based on their work.

About

CatNet: Class Incremental 3D ConvNets for Lifelong Egocentric Gesture Recognition

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published