Skip to content

Projeto de ciência de dados com o obejtivo de analisar os hábitos de estudos mais relevantes a partir dos microdados do ENEM

Notifications You must be signed in to change notification settings

vinifm/enem-habitos-estudos

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Quais fatores mais influenciam no desempenho de um aluno no ENEM e como podemos ajudá-lo a melhorar sua performance?

Este documento especifica o projeto em desenvolvimento pelo nosso grupo como produto das disciplinas: Projeto Integrado e Banco de Dados.

Os dados usados foram os Microdados do ENEM 2022

Descrição do Projeto

Com o tema focado em: Quais hábitos de estudo são mais relevantes para o desempenho dos estudantes no ENEM?

O seguinte projeto consiste em sistematizar as técnicas apresentadas nas disiciplimas de projeto em negócios e banco de dados para atingir os objetivos definidos.

Metódo

O projeto seguiu o seguinte método:

Entendimento do negócio:

    1. Oferecer uma contextualização do contexto do negócio e da necessidade da solução que seu grupo irá propor.
    • O ENEM (Exame Nacional do Ensino Médio), a princípio criado para avaliar a qualidade do ensino brasileiro. É hoje a principal forma de ingresso nas instituições de ensino superior. Com uma média de mais de 4 milhões de inscritos nos últimos 5 anos,1 os microdados do exame podem fornecer informações valiosas sobre os diversos perfis de alunos e como as escolas poderiam melhorar seus desempenhos.
    1. Estabelecer claramente o objetivo do trabalho.
    • A partir de questões que englobam a percepção de aprendizagem do aluno, sua gestão de tempo, práticas de estudo, rotina, acesso a tecnologia e a infraestrutura, o projeto tem como adjetivo mapear os principais hábitos dos alunos com sua performance no ENEM. Ao disponibilizar tal análise para as escolas, é possível estruturar um planejamento para minimizar as dificuldades e reforçar as qualidades mais relevantes para otimizar o desempenho dos alunos na prova.
  1. Implementar o projeto. (Entendimento, preparação e modelagem dos dados).
  2. Analisar como a implementação atende ao objetivo proposto. (Avaliação e implementação).
  3. Conclusão.

Requisitos do projeto

Banco de Dados

O projeto deve considerar os seguintes requisitos:

  • REQ#01: Definir pelo menos uma função para realizar tarefas específicas.
  • REQ#02: Identificar um dataset.
  • REQ#03: Construir um modelo conceitual.
  • REQ#04: Construir um modelo lógico.
  • REQ#05: Construir um físico.
  • REQ#06: Popular o BD a partir do dataset.
  • REQ#07: Criar 10 questões para que o BD responda.
  • REQ#08: O relatório do projeto deve ser desenvolvido e entregue em um caderno Jupyter.
  • REQ#09: O projeto deve ser apresentado para a banca na data estipulada.

Machine Learning

  • REQ#01: Utilizar um ou mais datasets (não pode ser toy) para o treinamento dos classificadores(*).
  • REQ#02: Realizar uma análise exploratória do dataset por meio de um caderno Jupyter. Utilize gráficos na análise.
  • REQ#03: Treinar um classificador kNN.
  • REQ#04: Treinar um classificador de Regressão Linear.
  • REQ#05: Treinar um classificador de Regressão Logística.
  • REQ#06: Treinar um classicador Naive Bayes (Multinomial, Bernoulli ou Gaussian).
  • REQ#07: Treinar um classificador Support Vector Machine (SVM) (desejável).
  • REQ#08: Treinar um classificador de Árvore de Decisão ou Floresta Aleatória.
  • REQ#09: Todos os classificadores devem ser avaliados com 30% dos dados, utilizando as métricas F1, acurácia, revocação (recall), precisão. Além disso, utilizem a matriz de confusão para a visualização do desempenho.
  • REQ#10: Todos os classificadores devem ser persistidos (joblib, pickle) antes de serem entregues.

About

Projeto de ciência de dados com o obejtivo de analisar os hábitos de estudos mais relevantes a partir dos microdados do ENEM

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Other 0.1%