Skip to content

Commit 365b7b2

Browse files
authoredSep 6, 2024··
Merge pull request #48 from virtual-labs/dev
Update theory.md
2 parents 9321add + 497adc9 commit 365b7b2

File tree

1 file changed

+9
-9
lines changed

1 file changed

+9
-9
lines changed
 

‎experiment/theory.md

+9-9
Original file line numberDiff line numberDiff line change
@@ -30,7 +30,7 @@ A logarithmic amplifier is an electronic circuit that produces an output that is
3030
<center><img src="images\Rloadtheory.png" style="-webkit-filter:contrast(120%);"></center>
3131
<center><b>Fig. 1 Single Phase Half Wave Controlled Rectifier Circuit with R load</b></center><br>
3232

33-
The circuit is energized by the line voltage or transformer secondary voltage, V = V<sub>max</sub> sin ωt as
33+
The circuit is energized by the line voltage or transformer secondary voltage, V = V<sub>m</sub> sin ωt as
3434
shown in Fig 1. Here, V<sub>0</sub> = Load output voltage, i<sub>0</sub> = Load current and V<sub>T</sub> = Voltage across the thyristor T. It is assumed that the peak supply voltage never exceeds the forward and reverse-blocking ratings of the thyristor. The thyristor can be triggered at any angle α in the positive half cycle and thus the output voltage can be controlled. The thyristor blocks during the negative half cycle. The various voltage and current waveforms for the Single Phase Half Wave Controlled Rectifier with resistive load circuit are shown in Fig 2.<br>
3535

3636
<center> <img src="images\R load graph.PNG" alt="Fig. 2 :Single Phase Half Wave Controlled Rectifier Circuit with R load"></center><br>
@@ -54,47 +54,47 @@ current and no voltage is applied to the load R.<br>
5454

5555
<center>
5656

57-
$$V_{dc} = \frac {1}{2\pi} \left[\int_{\alpha}^{\pi} V_{max} ~ sin ~ \omega t ~ d(\omega t)+\int_{\pi}^{2\pi}(0)~d(\omega t)\right]$$
57+
$$V_{dc} = \frac {1}{2\pi} \left[\int_{\alpha}^{\pi} V_m ~ sin ~ \omega t ~ d(\omega t)+\int_{\pi}^{2\pi}(0)~d(\omega t)\right]$$
5858

5959
</center>
6060

6161
<center>
6262

63-
$$V_{dc} = \frac {1}{2\pi} \bigg[-V_{max} ~ cos\omega t \bigg]_{\alpha}^{\pi} = \frac {V_m}{2\pi}(1+cos \alpha)........(1)$$
63+
$$V_{dc} = \frac {1}{2\pi} \bigg[-V_m ~ cos\omega t \bigg]_{\alpha}^{\pi} = \frac {V_m}{2\pi}(1+cos \alpha)........(1)$$
6464

6565
</center>
6666

67-
Where, V<sub>max</sub> is peak value of the ac input voltage.
67+
Where, V<sub>m</sub> is peak value of the ac input voltage.
6868
From the above Eq. (1) it is obvious that the load voltage varies with firing angle α having extremes values
6969
for α = 0 and α = π or 180°. The maximum output voltage is obtained when α = 0 and is given by<br>
7070

7171
<center>
7272

73-
$$V_{dc ~ max} =\frac {V_{max}}{\pi} .......(2)$$
73+
$$V_{dc ~ max} =\frac {V_m}{\pi} .......(2)$$
7474

7575
</center>
7676

7777
<b>Average load current</b> with resistive load is directly proportional to the average load voltage and is given by<br>
7878

7979
<center>
8080

81-
$$I_{dc} = \frac {V_{dc}}{R} = \frac {V_{max}}{2\pi R}(1+cos \alpha ).......(3)$$
81+
$$I_{dc} = \frac {V_{dc}}{R} = \frac {V_m}{2\pi R}(1+cos \alpha ).......(3)$$
8282

8383
</center>
8484

8585
The rms value of load voltage is given by<br>
8686

8787
<center>
8888

89-
$$V_{L~rms}=\frac {V_{max}}{2 \sqrt{\pi} } \left(\pi -\alpha + \frac {1}{2}sin ~ 2 \alpha\right)^\frac {1}{2}.......(4)$$
89+
$$V_{L~rms}=\frac {V_m}{2 \sqrt{\pi} } \left(\pi -\alpha + \frac {1}{2}sin ~ 2 \alpha\right)^\frac {1}{2}.......(4)$$
9090

9191
</center>
9292

9393
For firing angle α =0<br>
9494

9595
<center>
9696

97-
$$V_{L ~ rms} = \frac {V_{max}}{2}.......(5)$$
97+
$$V_{L ~ rms} = \frac {V_m}{2}.......(5)$$
9898

9999
</center>
100100

@@ -110,7 +110,7 @@ Average output power is given by <br>
110110

111111
<center>
112112

113-
$$P_{dc} = V_{dc}.I_{dc} = \frac {V_{max}^2}{4 \pi^2 R}(1+ cos \alpha)^ \frac {1}{2}.......(7)$$
113+
$$P_{dc} = V_{dc}.I_{dc} = \frac {V_m^2}{4 \pi^2 R}(1+ cos \alpha)^ \frac {1}{2}.......(7)$$
114114

115115
</center>
116116

0 commit comments

Comments
 (0)
Please sign in to comment.