-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcar_and_pedestrian_Tracking.py
64 lines (44 loc) · 1.42 KB
/
car_and_pedestrian_Tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import cv2
#our image
#img_file = 'cars.png'
video=cv2.VideoCapture('tesla.mp4')
#our pre-trained car classifier
car_tracker_file = 'car.xml'
pedestrian_tracker_file = 'pedestrian.xml'
car_tracker=cv2.CascadeClassifier(car_tracker_file)
pedestrian_tracker=cv2.CascadeClassifier(pedestrian_tracker_file)
while True:
#Read the current frame
(read_successfull, frame) =video.read()
if read_successfull:
grayscaled_frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
else:
break
cars= car_tracker.detectMultiScale(grayscaled_frame)
pedestrians= pedestrian_tracker.detectMultiScale(grayscaled_frame)
#print(cars)
for (x,y,w,h) in cars:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)
for (x,y,w,h) in pedestrians:
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
#display the images with cars spotted
cv2.imshow('vizzp car detector',frame)
# don't autoclose ,wait for a keypress
key=cv2.waitKey(1)
if key==81 or key==113:
break
video.release()
"""
car_tracker=cv2.CascadeClassifier(classifier_file)
grayscaled_frame=cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
#detect car
cars= car_tracker.detectMultiScale(black_n_white)
#draw rectangle around the cars
for (x,y,w,h) in cars:
cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
#display the images with cars spotted
cv2.imshow('vizzp car detector',img)
#don't autoclose ,wait for a keypress
cv2.waitKey()
"""
print("code completed")