Skip to content

Commit 4979eb7

Browse files
[Doc]: fix typos in various files (#24821)
Signed-off-by: Didier Durand <durand.didier@gmail.com>
1 parent a8c0f59 commit 4979eb7

File tree

7 files changed

+7
-7
lines changed

7 files changed

+7
-7
lines changed

.buildkite/nightly-benchmarks/nightly-descriptions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ This benchmark aims to:
88

99
Latest results: [results link](https://blog.vllm.ai/2024/09/05/perf-update.html), scroll to the end.
1010

11-
Latest reproduction guilde: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
11+
Latest reproduction guide: [github issue link](https://github.com/vllm-project/vllm/issues/8176)
1212

1313
## Setup
1414

vllm/model_executor/layers/quantization/moe_wna16.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -190,7 +190,7 @@ def create_weights(self, layer: torch.nn.Module, num_experts: int,
190190
group_size = self.quant_config.group_size
191191
group_size_div_factor = 1
192192

193-
# make intermediate_size and hidden_size diviable by group_size
193+
# make intermediate_size and hidden_size divisible by group_size
194194
# we reduce the group size to ensure that
195195
# and we would repeat the loaded_weight later
196196
while intermediate_size_per_partition % group_size or \

vllm/model_executor/layers/quantization/utils/marlin_utils_test.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ class MarlinWorkspace:
1919

2020
def __init__(self, out_features, min_thread_n, max_parallel):
2121
assert (out_features % min_thread_n == 0), (
22-
"out_features = {} is undivisible by min_thread_n = {}".format(
22+
"out_features = {} is indivisible by min_thread_n = {}".format(
2323
out_features, min_thread_n))
2424

2525
max_workspace_size = ((out_features // min_thread_n) * max_parallel)

vllm/model_executor/layers/sampler.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -649,7 +649,7 @@ def _sample_with_torch(
649649
else:
650650
sampled_token_ids_tensor = None
651651

652-
# Counterintiutively, having two loops here is actually faster.
652+
# Counterintuitively, having two loops here is actually faster.
653653
# The first loop can run without waiting on GPU<->CPU sync.
654654
for sampling_type in SamplingType:
655655
sample_indices = categorized_sample_indices[sampling_type]

vllm/model_executor/models/glm4_1v.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1524,7 +1524,7 @@ def get_multimodal_embeddings(
15241524
return None
15251525

15261526
# The result multimodal_embeddings is tuple of tensors, with each
1527-
# tensor correspoending to a multimodal data item (image or video).
1527+
# tensor corresponding to a multimodal data item (image or video).
15281528
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
15291529

15301530
# NOTE: It is important to iterate over the keys in this dictionary

vllm/model_executor/models/interns1.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -738,7 +738,7 @@ def get_multimodal_embeddings(self,
738738
return []
739739

740740
# The result multimodal_embeddings is tuple of tensors, with each
741-
# tensor correspoending to a multimodal data item (image or video).
741+
# tensor corresponding to a multimodal data item (image or video).
742742
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
743743

744744
# NOTE: It is important to iterate over the keys in this dictionary

vllm/model_executor/models/ultravox.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -662,7 +662,7 @@ def pad_and_concat_to_dim3(
662662
max_len = max(f.shape[-1] for f in features)
663663
# Ensure all features have dim=3
664664
features = [f.view(-1, *f.shape[-2:]) for f in features]
665-
# Pad and oncatenate:
665+
# Pad and concatenate:
666666
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
667667
features = [F.pad(f, (0, max_len - f.shape[-1])) for f in features]
668668
return torch.cat(features)

0 commit comments

Comments
 (0)