This repository contains the evaluation metrics of our paper Dual Octree Graph Networks, which are implemented by Convolutional Occupancy Networks.
-
Create an anaconda environment called
pytorch-1.4.0
usingconda env create -f environment.yaml conda activate pytorch-1.4.0
-
Compile the extension modules.
python setup.py build_ext --inplace
Denote the folder where you clone the code of our dual octree graph networks as ognn
.
-
Evaluate the results on the testing dataset of ShapeNet.
python eval_meshes.py \ configs/pointcloud/shapenet.yaml \ --dataset_folder /ognn/data/ShapeNet/dataset \ --generation_dir /ognn/logs/shapenet_eval/test
-
Evaluate the results on the unseen 5 categories of ShapeNet.
python eval_meshes.py \ configs/pointcloud/shapenet.yaml \ --dataset_folder /ognn/data/ShapeNet/dataset.unseen5 \ --generation_dir /ognn/logs/shapenet_eval/unseen5
-
Evaluate the results on the synthetic room dataset.
python eval_meshes.py \ configs/pointcloud/room.yaml \ --dataset_folder /ognn/data/room/synthetic_room_dataset \ --generation_dir /ognn/logs/docnn/room_eval/room