Skip to content

wang-ps/ConvONet

Repository files navigation

Evaluation Metrics of Dual Octree Graph Networks

This repository contains the evaluation metrics of our paper Dual Octree Graph Networks, which are implemented by Convolutional Occupancy Networks.

Installation

  • Create an anaconda environment called pytorch-1.4.0 using

    conda env create -f environment.yaml
    conda activate pytorch-1.4.0
    
  • Compile the extension modules.

    python setup.py build_ext --inplace
    

Evaluation

Denote the folder where you clone the code of our dual octree graph networks as ognn.

  • Evaluate the results on the testing dataset of ShapeNet.

    python eval_meshes.py  \
          configs/pointcloud/shapenet.yaml  \
          --dataset_folder /ognn/data/ShapeNet/dataset  \
          --generation_dir /ognn/logs/shapenet_eval/test
  • Evaluate the results on the unseen 5 categories of ShapeNet.

    python eval_meshes.py  \
          configs/pointcloud/shapenet.yaml  \
          --dataset_folder /ognn/data/ShapeNet/dataset.unseen5  \
          --generation_dir /ognn/logs/shapenet_eval/unseen5
  • Evaluate the results on the synthetic room dataset.

    python eval_meshes.py  \
          configs/pointcloud/room.yaml  \
          --dataset_folder /ognn/data/room/synthetic_room_dataset  \
          --generation_dir /ognn/logs/docnn/room_eval/room

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published