Skip to content

wangguan1995/3D_ESRGAN_Turbulence

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Just Do It

git clone https://github.com/wangguan1995/3D_ESRGAN_Turbulence.git
cd 3D_ESRGAN_Turbulence
checkout master

wget https://dataset.bj.bcebos.com/PaddleScience/cylinder3D/3D_ESRGAN/data.zip
unzip data.zip

pip install -r requirements.txt     # install libs

python nor_fluc3d.py                 # normalize data
python ESRGAN_3D.py                  # train and plot png

Paper

2022 Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolationbased transfer learning

Code from:

https://fluids.pusan.ac.kr/ fluids/65416/subview.do

Colorful pictures

image

image

image

Overview

3D-ESRGAN is developed to reconstruct 3D super-resolution channel flow from low-resolution data.

Data (Very Poor)

100 snapshots (channel flow at Rer =180) and its low-resolution data are provided for tutorial.  Before the input, the data should be normalized using code nor_fluc3d.py to get normalized data.

Training

Use 3d-esrgan,py to train the deep learning model. It will save architecture and weights files automatically.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages