forked from zcdliuwei/RetinaNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
image.py
340 lines (259 loc) · 10.7 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
"""
Copyright 2017-2018 Fizyr (https://fizyr.com)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
from __future__ import division
import numpy as np
import cv2
from PIL import Image
from transform import change_transform_origin
def read_image_bgr(path):
""" Read an image in BGR format.
Args
path: Path to the image.
"""
# We deliberately don't use cv2.imread here, since it gives no feedback on errors while reading the image.
image = np.asarray(Image.open(path).convert('RGB'))
return image[:, :, ::-1].copy()
def preprocess_image(x, mode='caffe'):
x = x.astype(np.float32)
if mode == 'tf':
x /= 127.5
x -= 1.
elif mode == 'caffe':
x -= [103.939, 116.779, 123.68]
return x
def adjust_transform_for_image(transform, image, relative_translation):
""" Adjust a transformation for a specific image.
The translation of the matrix will be scaled with the size of the image.
The linear part of the transformation will adjusted so that the origin of the transformation will be at the center of the image.
"""
height, width, channels = image.shape
result = transform
# Scale the translation with the image size if specified.
if relative_translation:
result[0:2, 2] *= [width, height]
# Move the origin of transformation.
result = change_transform_origin(transform, (0.5 * width, 0.5 * height))
return result
class TransformParameters:
""" Struct holding parameters determining how to apply a transformation to an image.
Args
fill_mode: One of: 'constant', 'nearest', 'reflect', 'wrap'
interpolation: One of: 'nearest', 'linear', 'cubic', 'area', 'lanczos4'
cval: Fill value to use with fill_mode='constant'
relative_translation: If true (the default), interpret translation as a factor of the image size.
If false, interpret it as absolute pixels.
"""
def __init__(
self,
fill_mode = 'nearest',
interpolation = 'linear',
cval = 0,
relative_translation = True,
):
self.fill_mode = fill_mode
self.cval = cval
self.interpolation = interpolation
self.relative_translation = relative_translation
def cvBorderMode(self):
if self.fill_mode == 'constant':
return cv2.BORDER_CONSTANT
if self.fill_mode == 'nearest':
return cv2.BORDER_REPLICATE
if self.fill_mode == 'reflect':
return cv2.BORDER_REFLECT_101
if self.fill_mode == 'wrap':
return cv2.BORDER_WRAP
def cvInterpolation(self):
if self.interpolation == 'nearest':
return cv2.INTER_NEAREST
if self.interpolation == 'linear':
return cv2.INTER_LINEAR
if self.interpolation == 'cubic':
return cv2.INTER_CUBIC
if self.interpolation == 'area':
return cv2.INTER_AREA
if self.interpolation == 'lanczos4':
return cv2.INTER_LANCZOS4
def apply_transform(matrix, image, params):
"""
Apply a transformation to an image.
The origin of transformation is at the top left corner of the image.
The matrix is interpreted such that a point (x, y) on the original image is moved to transform * (x, y) in the generated image.
Mathematically speaking, that means that the matrix is a transformation from the transformed image space to the original image space.
Args
matrix: A homogeneous 3 by 3 matrix holding representing the transformation to apply.
image: The image to transform.
params: The transform parameters (see TransformParameters)
"""
output = cv2.warpAffine(
image,
matrix[:2, :],
dsize = (image.shape[1], image.shape[0]),
flags = params.cvInterpolation(),
borderMode = params.cvBorderMode(),
borderValue = params.cval,
)
return output
def compute_resize_scale(image_shape, min_side=800, max_side=1333):
""" Compute an image scale such that the image size is constrained to min_side and max_side.
Args
min_side: The image's min side will be equal to min_side after resizing.
max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side.
Returns
A resizing scale.
"""
(rows, cols, _) = image_shape
smallest_side = min(rows, cols)
# rescale the image so the smallest side is min_side
scale = min_side / smallest_side
# check if the largest side is now greater than max_side, which can happen
# when images have a large aspect ratio
largest_side = max(rows, cols)
if largest_side * scale > max_side:
scale = max_side / largest_side
return scale
def resize_image(img, min_side=800, max_side=1333):
""" Resize an image such that the size is constrained to min_side and max_side.
Args
min_side: The image's min side will be equal to min_side after resizing.
max_side: If after resizing the image's max side is above max_side, resize until the max side is equal to max_side.
Returns
A resized image.
"""
# compute scale to resize the image
scale = compute_resize_scale(img.shape, min_side=min_side, max_side=max_side)
# resize the image with the computed scale
img = cv2.resize(img, None, fx=scale, fy=scale)
return img, scale
def _uniform(val_range):
""" Uniformly sample from the given range.
Args
val_range: A pair of lower and upper bound.
"""
return np.random.uniform(val_range[0], val_range[1])
def _check_range(val_range, min_val=None, max_val=None):
""" Check whether the range is a valid range.
Args
val_range: A pair of lower and upper bound.
min_val: Minimal value for the lower bound.
max_val: Maximal value for the upper bound.
"""
if val_range[0] > val_range[1]:
raise ValueError('interval lower bound > upper bound')
if min_val is not None and val_range[0] < min_val:
raise ValueError('invalid interval lower bound')
if max_val is not None and val_range[1] > max_val:
raise ValueError('invalid interval upper bound')
def _clip(image):
"""
Clip and convert an image to np.uint8.
Args
image: Image to clip.
"""
return np.clip(image, 0, 255).astype(np.uint8)
class VisualEffect:
""" Struct holding parameters and applying image color transformation.
Args
contrast_factor: A factor for adjusting contrast. Should be between 0 and 3.
brightness_delta: Brightness offset between -1 and 1 added to the pixel values.
hue_delta: Hue offset between -1 and 1 added to the hue channel.
saturation_factor: A factor multiplying the saturation values of each pixel.
"""
def __init__(
self,
contrast_factor,
brightness_delta,
hue_delta,
saturation_factor,
):
self.contrast_factor = contrast_factor
self.brightness_delta = brightness_delta
self.hue_delta = hue_delta
self.saturation_factor = saturation_factor
def __call__(self, image):
""" Apply a visual effect on the image.
Args
image: Image to adjust
"""
if self.contrast_factor:
image = adjust_contrast(image, self.contrast_factor)
if self.brightness_delta:
image = adjust_brightness(image, self.brightness_delta)
if self.hue_delta or self.saturation_factor:
image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
if self.hue_delta:
image = adjust_hue(image, self.hue_delta)
if self.saturation_factor:
image = adjust_saturation(image, self.saturation_factor)
image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR)
return image
def random_visual_effect_generator(
contrast_range=(0.9, 1.1),
brightness_range=(-.1, .1),
hue_range=(-0.05, 0.05),
saturation_range=(0.95, 1.05)
):
""" Generate visual effect parameters uniformly sampled from the given intervals.
Args
contrast_factor: A factor interval for adjusting contrast. Should be between 0 and 3.
brightness_delta: An interval between -1 and 1 for the amount added to the pixels.
hue_delta: An interval between -1 and 1 for the amount added to the hue channel.
The values are rotated if they exceed 180.
saturation_factor: An interval for the factor multiplying the saturation values of each
pixel.
"""
_check_range(contrast_range, 0)
_check_range(brightness_range, -1, 1)
_check_range(hue_range, -1, 1)
_check_range(saturation_range, 0)
def _generate():
while True:
yield VisualEffect(
contrast_factor=_uniform(contrast_range),
brightness_delta=_uniform(brightness_range),
hue_delta=_uniform(hue_range),
saturation_factor=_uniform(saturation_range),
)
return _generate()
def adjust_contrast(image, factor):
""" Adjust contrast of an image.
Args
image: Image to adjust.
factor: A factor for adjusting contrast.
"""
mean = image.mean(axis=0).mean(axis=0)
return _clip((image - mean) * factor + mean)
def adjust_brightness(image, delta):
""" Adjust brightness of an image
Args
image: Image to adjust.
delta: Brightness offset between -1 and 1 added to the pixel values.
"""
return _clip(image + delta * 255)
def adjust_hue(image, delta):
""" Adjust hue of an image.
Args
image: Image to adjust.
delta: An interval between -1 and 1 for the amount added to the hue channel.
The values are rotated if they exceed 180.
"""
image[..., 0] = np.mod(image[..., 0] + delta * 180, 180)
return image
def adjust_saturation(image, factor):
""" Adjust saturation of an image.
Args
image: Image to adjust.
factor: An interval for the factor multiplying the saturation values of each pixel.
"""
image[..., 1] = np.clip(image[..., 1] * factor, 0 , 255)
return image