Implementation of our paper Null-sampling for Interpretable and Fair Representations.
Python 3.8 (or higher)
The dependencies are listed in the setup.py
.
To install them all, do
pip install -e .
Training of the CelebA cFlow model can be reproduced for CelebA and cMNIST, respectively, with the folowing commands
python start_inn.py --dataset celeba --levels 3 --level-depth 32 --glow True --reshape-method squeeze --autoencode False --input-noise True --quant-level 5 --use-wandb True --factor-splits 0=0.5 1=0.5 --train-on-recon False --recon-detach False --batch-size 32 --nll-weight 1 --pred-s-weight 1e-2 --zs-frac 0.001 --coupling-channels 512 --super-val True --super-val-freq 10 --val-freq 1 --task-mixing 0.5 --gpu 0 --num-discs 10 --disc-channels 512 --data-split-seed 42 --iters 76000
python start_inn.py --dataset cmnist --levels 3 --level-depth 24 --glow True --reshape-method squeeze --autoencode False --input-noise True --quant-level 5 --use-wandb True --factor-splits 0=0.5 1=0.5 --train-on-recon False --recon-detach False --batch-size 256 --test-batch-size 512 --nll-weight 1 --pred-s-weight 1e-2 --zs-frac 0.002 --coupling-channels 512 --super-val True --super-val-freq 5 --val-freq 1 --task-mixing 0 --gpu 0 --num-discs 1 --disc-channels 512 --level-depth 24 --num-discs 3
@InProceedings{KehBarThoQua20,
author = {Kehrenberg, Thomas and
Bartlett, Myles and
Thomas, Oliver and
Quadrianto, Novi},
editor = {Vedaldi, Andrea and Bischof, Horst and Brox, Thomas and Frahm, Jan-Michael},
title = {Null-Sampling for Interpretable and Fair Representations},
booktitle = {Computer Vision -- ECCV 2020},
year = {2020},
publisher = {Springer International Publishing},
address = {Cham},
pages = {565--580},
isbn = {978-3-030-58574-7}
}