This is the caffe implementation for Context-Aware Deep Spatio-Temporal Network for Hand Pose Estimation from Depth Images.
We leverage an LSTM for capturing spatio-temporal context in the depth image sequences.
Method | NYU | ICVL |
---|---|---|
HeatMap | 21.02 | - |
LRF | - | 12.56 |
DeepPrior | 19.73 | 9.42 |
Feedback | 15.97 | - |
DeepModel | 16.90 | 11.55 |
Lie-X | 14.51 | - |
CrossingNet | - | 10.22 |
LSN | - | 8.20 |
CADSN | 14.83 | 8.04 |
If you find the code is helpful for you, please kindly cite this paper in your publications:
@article{wu2018context,
title={Context-Aware Deep Spatiotemporal Network for Hand Pose Estimation From Depth Images},
author={Wu, Yiming and Ji, Wei and Li, Xi and Wang, Gang and Yin, Jianwei and Wu, Fei},
journal={IEEE transactions on cybernetics},
volume={50},
number={2},
pages={787--797},
year={2018},
publisher={IEEE}
}