Source code for NeurIPS 2022 paper Product Ranking for Revenue Maximization with Multiple Purchases.
In this paper, we propose a more realistic consumer choice model to characterize consumer behaviors under multiple-purchase settings. We further develop the Multiple-Purchase-with-Budget UCB (MPB-UCB) algorithms with
pip install -r requirements.txt
Take the non-contextual setting when
python main_non_contextual.py --method Optimal --num-prod 50 --num-consumer 100000 -q 0.9 -s 0.5 --lmbd-upper 0.3 --seed-parameter 666
python main_non_contextual.py --method Ours --num-prod 50 --num-consumer 100000 -q 0.9 -s 0.5 --lmbd-upper 0.3 --seed-parameter 666
Use python main_non_contextual.py -h
to show all arguments for all baselines. The experiments are run 5 times with different seeds.
python plot.py --num-prod 50 --num-consumer 100000 -q 0.9 -s 0.5 --lmbd-upper 0.3 --seed-parameter 666
The figures on the regret, average revenue, revenue ratio are generated in the figs/
directory.
Grid search with NNI
Search the hyper-parameters of our method in the default setting.
nnictl create --config nni_ymls/config_non_contextual_Ours.yml --port 9000
Yamls for other baselines are included in the nni_ymls/
directory.
@inproceedings{xu2022product,
title={Product Ranking for Revenue Maximization with Multiple Purchases},
author={Renzhe Xu and Xingxuan Zhang and Bo Li and Yafeng Zhang and Xiaolong Chen and Peng Cui},
booktitle={Thirty-Sixth Conference on Neural Information Processing Systems},
year={2022},
}