Official implementation of our paper "Semi-Supervised Cell Recognition under Point Supervision"
Two choices.
- You can download the raw data from CoNIC to datasets/conic folder and then run this script to obtain training/validation/test subsets .
- A more convenient way is to download the ready-made data subsets from Google Drive (after review).
To reproduce baseline models:
python train_base.py --dataset conic --space 8 --num_classes 6 --eos_coef 0.4 --match_dis 6 --output_dir=he_sup_5_base --ratio 5
To train PCR models under our proposed framework:
python train_semi.py --dataset conic --space 8 --num_classes 6 --eos_coef 0.4 --match_dis 6 --output_dir=he_sup_5_semi --ratio 5 --enable_semi_sup
To test baseline models, run
python train_base.py --dataset conic --space 8 --num_classes 6 --match_dis 6 --ratio 5 --test
To test models trained using our framework, run
python train_semi.py --dataset conic --space 8 --num_classes 6 --match_dis 6 --ratio 5 --test
The checkpoints will be also released here after review.