-
Notifications
You must be signed in to change notification settings - Fork 0
wistone/mexLaRank
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
************************************************************************ * LARANK : Online solver for multiclass Support Vector Machines. * * (see Bordes et al., "Solving MultiClass Support Vector Machines with * * LaRank" published in Proceedings of ICML'07, for more details) * ************************************************************************ ** LICENSE **: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; ** COMPILATION **: This library has been implemented in C++. Simply typing make should generate the la_rank_learn and la_rank_classify binaries. ** USAGE **: The C++ library implements the kernel cache and the basic operations. Two additional programs, la_rank_learn and la_rank_classify can be used to run experiments. la_rank_learn learns and stores models for multiclass classification with LaRank. la_rank_classify uses a model learned with LaRank to make predictions. Typing la-rank_learn and/or la_rank_classify with no argument should producethe following helps. LA_RANK_LEARN: learns models for multiclass classification with the 'LaRank algorithm'. Usage: la_rank_learn [options] training_set_file model_file options: -c cost : set the parameter C (default 1) -e tau : threshold determining tau-violating pairs of coordinates (default 1e-4) -t kernel function (default 0): 0 linear : K(X,X')=X*X' 1 polynomial : K(X,X')=(g*X*X'+c0)^d 2 rbf : K(X,X')=exp(-g*||X-X'||^2) -g gamma : coefficient for polynomial and rbf kernels (default 1) -d degree of polynomial kernel (default 2) -b c0 coefficient for polynomial kernel (default 0) -k cache size : in MB (default 64) -m mode : set the learning mode (default 0) 0: online learning 1: batch learning (stopping criteria: duality gap < C) -v verbosity degree : display informations every v % of the training set size (default 10) LA_RANK_CLASSIFY: uses models learned with the 'LaRank algorithm' for multiclass classification to make prediction. Usage: la_rank_classify [options] training_set_file testing_set_file model_file options: -t kernel function (default 0): 0 linear : K(X,X')=X*X' 1 polynomial : K(X,X')=(g*X*X'+c0)^d 2 rbf : K(X,X')=exp(-g*||X-X'||^2) -g gamma : coefficent for polynomial and rbf kernels (default 1) -d degree of polynomial kernel (default 2) -b c0 coefficient for polynomial kernel (default 0) ** DATA FILE FORMAT ** The programs uses the so called LibSVM/SVMlight/SVMstruct data format. Each example is represented by a line in the following format: <line> = <target> <feature>:<value> ... <feature>:<value> <target> = <int> <feature> = <integer> <value> = <float> ** Copyright (C) 2008- Antoine Bordes **
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published