Pytorch implementation of GeoMix: Towards Geometry-Aware Data Augmentation [1].
Install the required packages according to requirements.txt.
Tip: Installing torch_geometric
with a specific version number may not be easy. I think it is OK to install a version of torch_geometric
different from the one I used, as long as it is compatible with your hardware.
For the Squirrel and Chameleon datasets, please download the data files from here. Save the Squirrel data file in the ./data/wiki_new/squirrel
folder, and save the Chameleon data file in the ./data/wiki_new/chameleon
folder.
For the Pileup dataset, please download the following files from this link provided in this GitHub repo: test_gg_PU10.root, test_gg_PU30.root, test_gg_PU50.root, test_qq_PU10.root and test_qq_PU30.root. Save all the files in the ./data/pileup
folder.
We provide our extracted features of images from Cifar10 and STL10 datasets in ./data
.
For other datasets, our scripts will automatically download data files.
To run GeoMix on Cora dataset, switch to src/main_exp and run the following command:
# GeoMix-I
python main.py --method augTrain --encoder geomix_1 --dataset cora --lr 0.1 \
--num_layers 2 --hidden_channels 16 --weight_decay 5e-4 --dropout 0.5 \
--device 1 --alpha 0.1 --hops 3 --label_grad --runs 5
# GeoMix-II
python main.py --method augTrain --encoder geomix_2 --dataset cora --lr 0.1 \
--num_layers 2 --hidden_channels 16 --weight_decay 5e-4 --dropout 0.5 \
--device 1 --hops 2 --alpha 0.1 --label_grad --runs 5
# GeoMix-III
python main.py --method augTrain --encoder geomix_3 --dataset cora --lr 0.1 \
--num_layers 2 --hidden_channels 16 --weight_decay 5e-4 --dropout 0.5 \
--hops 2 --res_weight 0.1 --graph_weight 0.8 --use_weight --attn_emb_dim 16 \
--label_grad --runs 5 --device 3
Please refer to .sh scipts in exp
folder in each subdirectory of ./src
for experiments on other datasets. Note that you may need to change GPU device ID by adjusting the value of the --device
argument.
[1] Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. 2024. GeoMix: Towards Geometry-Aware Data Augmentation (KDD '24).
If you find our code helpful, please consider citing our work
@inproceedings{zhao2023glow,
title={GeoMix: Towards Geometry-Aware Data Augmentation},
author={Zhao, Wentao and Wu, Qitian and Yang, Chenxiao and Yan, Junchi}
booktitle={Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
year={2024}
}