Skip to content

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

License

Notifications You must be signed in to change notification settings

xiahaifeng1995/STPM-Anomaly-Detection-Localization-master

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

STPM-Anomaly-Detection-Localization-master

This is an implementation of the paper Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection.

Datasets

MVTec AD datasets : Download from MVTec website

Environment

pip install -r requirements.txt

Usage

python main.py --phase 'train or test' --dataset_path 'D:/dataset/mvtec_anomaly_detection' --save_path 'path\to\save\results' --obj 'class name'

MVTecAD AUC-ROC score (mean of n trials)

Category Paper
(pixel-level)
This code
(pixel-level)
Paper
(image-level)
This code
(image-level)
carpet 0.988 0.988(1) - 0.999(1)
grid 0.990 0.980(1) - 0.925(1)
leather 0.993 0.989(1) - 1.0(1)
tile 0.974 0.919(1) - 0.979(1)
wood 0.972 0.926(1) - 0.988(1)
bottle 0.988 0.973(1) - 0.993(1)
cable 0.955 0.971(1) - 0.995(1)
capsule 0.983 0.963(1) - 0.818(1)
hazelnut 0.985 0.971(1) - 0.975(1)
metal nut 0.976 0.963(1) - 0.995(1)
pill 0.978 0.934(1) - 0.887(1)
screw 0.983 0.961(1) - 0.806(1)
toothbrush 0.989 0.978(1) - 0.989(1)
transistor 0.825 0.921(1) - 0.978(1)
zipper 0.985 0.969(1) - 0.899(1)
mean 0.970 0.960(1) 0.955 0.948(1)

Visualization examples

Acknowledgement

The code is partially adapted from STPM_anomaly_detection

About

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages