This repository hosts the code and data for NIPS'18 paper: Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections.
You can install all the required packages natively, but we recommend using conda.
-
Create an environment:
conda create -n polaris python=3.6 tensorflow keras pandas requests source activate polaris
-
Install
namedlist
,jsonlines
, andsvgwrite
:pip install namedlist jsonlines svgwrite
-
Install Gurobi. Academic licenses are free.
-
Install cleverhans:
pip install cleverhans
-
Install magenta. (Required by drawing tutoring).
- To run mortgage underwriting:
python -m fanniemae.mortgage_exp ./fanniemae/data/imb_100k.test ./fanniemae/models/model_5_200 100 100
- To run solver performance prediction:
python -m proof.proof_explain ./proof/models/8x100.h5 100
- To run drawing tutoring:
python -m gold_cat.cat_exp ./gold_cat/model/dis/cat_model_mix-9000 ./gold_cat/model/gen/
Instead of using pre-trained models, you can train your own models. (Coming soon)