By Qing Xu, Wenting Duan
MICCAI COMPAY 2021 paper: An Automatic Nuclei Image Segmentation Based on Multi-Scale Split-Attention U-Net
- pytorch >=1.5.0
- pytorch-lightning==1.1.0
- albumentations
A public microscopy image dataset from 2018 Data Science Bowl grand challenge:
You first need to download the public dataset or prepare your private dataset (with 2018 Data Science Bowl format). An example of training the model is:
python train.py --dataset train_set --loss combined --batch 8 --lr 0.001 --epoch 200
python eval.py --dataset test_set --model checkpoints/model_1.pth
python predict.py --dataset test_set --model checkpoints/model_1.pth
@InProceedings{pmlr-v156-xu21a,
title = {An Automatic Nuclei Image Segmentation Based on Multi-Scale Split-Attention U-Net},
author = {Xu, Qing and Duan, Wenting},
booktitle = {Proceedings of the MICCAI Workshop on Computational Pathology},
pages = {236--245},
year = {2021}
}