This is the code and demos for work "Deep learning-based prediction of intra-cardiac blood flow in long-axis cine magnetic resonance imaging" https://link.springer.com/article/10.1007/s10554-023-02804-2
In standard long-axis cine MR views the intensity fluctuations within the blood pool provide a visual clue about the global blood flow pattern within the cardiac cavities. In this project, we proposed a deep learning based method for automated intra-cardiac blood flow velocity prediction from standard long-axis Cine MRI. More movie demos (.mp4) are located here. (https://github.com/xsunn/BloodFlowPrediction/tree/main/DEMO-mp4).
Case Num | Cine MRI | 4D flow(gif) | DL (gif) | E/A-GT | E/A-DL |
---|---|---|---|---|---|
1 | |||||
2 | |||||
3 | |||||
4 | |||||
5 | |||||
6 | |||||
7 | |||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 | |||||
13 | |||||
14 | |||||
15 |
Case Num | Cine MRI | 4D flow(gif) | DL (gif) | E/A-GT | E/A-DL |
---|---|---|---|---|---|
1 | |||||
2 | |||||
3 | |||||
4 | |||||
5 | |||||
6 | |||||
7 | |||||
8 | |||||
9 | |||||
10 | |||||
11 | |||||
12 | |||||
13 | |||||
14 | |||||
15 |