Skip to content
master
Switch branches/tags
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Automatic Recall Machines

This repository contains the code for Automatic Recall Machines: Internal Replay, Continual Learning and the Brain.

ARM

As well as ARM, we include implementations of Adaptive DeepInversion and LwF-style distillation.

Dependencies

Our environment used:

  • python 3.6.8
  • pytorch 1.4.0
  • torchvision 0.5.0
  • numpy 1.18.4

Run the code

Commands for all our results on CIFAR10, MiniImageNet and MNIST are given in commands.txt. For example, to run recall on CIFAR10:

python -m code.scripts.ARM --model_ind_start 3717 --num_runs 5 --data cifar10 --lr 0.01 --task_model_type resnet18 --classes_per_task 2 --recall_from_t 950 --num_iterations 1 --M 100 --refine_sample_steps 10 --refine_sample_lr 10.0 --divergence_loss_weight 1.0 --L2 --L2_weight 1.0 --TV --TV_weight 1.0 --long_window --use_fixed_window --fixed_window 950 --sharpen_class --sharpen_class_weight 0.1 --notlocal_weight 1.0 --notlocal_new_weight 0.1 --diversity_weight 16.0 --aux_distill --aux_distill_weight 1.0 --max_t 4750 --store_model_freq 4750 --store_results_freq 950 --eval_freq 950 --cuda --out_root /scratch/ARM --data_path /scratch/CIFAR

Print results:

python -m code.scripts.print_results --root /scratch/shared/nfs1/xuji/ARM --start 3717

average val: acc 0.2586 +- 0.0145, forgetting 0.1046 +- 0.0330 
average test: acc 0.2687 +- 0.0107, forgetting 0.0959 +- 0.0371

About

Automatic Recall Machines: Internal Replay, Continual Learning and the Brain

Resources

License

Releases

No releases published

Packages

No packages published

Languages