This is the official repository for paper Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
- CIFAR10
- STL10
- ImageNet-143 (64px)
- VGG16 (for CIFAR10/ImageNet-143)
- Aaron (for STL10)
Please follow the google drive link
Plain
: No defenseRSE
: Random Self-ensembleAdv
: Adversarial trainingAdv_vi
: Adversarial training Bayesian neural network
Known bugs: due to a known bug in PyTorch #11742, we cannot run RSE/Adv-BNN with multi-GPUs.
lr=0.01
data=imagenet-sub # or `cifar10`, `stl10`
root=/path/to/data
model=vgg # vgg for `cifar10` or `imagenet-sub`, aaron for `stl10`
model_out=./checkpoint/${data}_${model}_plain
echo "model_out: " ${model_out}
CUDA_VISIBLE_DEVICES=3,4 python ./main_plain.py \
--lr ${lr} \
--data ${data} \
--model ${model} \
--root ${root} \
--model_out ${model_out}.pth \
lr=0.01
noise_init=0.2
noise_inner=0.1
data=imagenet-sub # or `cifar10`, `stl10`
root=/path/to/data
model=vgg # vgg for `cifar10` or `imagenet-sub`, aaron for `stl10`
model_out=./checkpoint/${data}_${model}_rse
echo "model_out: " ${model_out}
CUDA_VISIBLE_DEVICES=2 python ./main_rse.py \
--lr ${lr} \
--data ${data} \
--model ${model} \
--root ${root} \
--model_out ${model_out}.pth \
--noise_init ${noise_init} \
--noise_inner ${noise_inner} \
lr=0.01
steps=10
max_norm=0.01
data=imagenet-sub # or `cifar10`, `stl10`
root=/path/to/data
model=vgg # vgg for `cifar10` or `imagenet-sub`, aaron for `stl10`
model_out=./checkpoint/${data}_${model}_adv
echo "model_out: " ${model_out}
CUDA_VISIBLE_DEVICES=0,1,2,3 python ./main_adv.py \
--lr ${lr} \
--step ${steps} \
--max_norm ${max_norm} \
--data ${data} \
--model ${model} \
--root ${root} \
--model_out ${model_out}.pth \
lr=0.01
steps=10
max_norm=0.01
sigma_0=0.1
init_s=0.1
alpha=0.02
data=imagenet-sub
root=/path/to/data
model=vgg
model_out=./checkpoint/${data}_${model}_adv_vi
echo "model_out: " ${model_out}
CUDA_VISIBLE_DEVICES=4 python ./main_adv_vi.py \
--lr ${lr} \
--step ${steps} \
--max_norm ${max_norm} \
--sigma_0 ${sigma_0} \
--alpha ${alpha} \
--init_s ${init_s} \
--data ${data} \
--model ${model} \
--root ${root} \
--model_out ${model_out}.pth \