Tensorflow implementation of Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions.
The network architecture
- Toy experiment
- Generated images
- Face synthesis
- Prerequisites
- Tensorflow
- Python 2.x with matplotlib, numpy and scipy
- Dataset
- FaceScrub
- Images should be placed in ./Datas/facescrub_aligned/
- FaceScrub
- pre-trained model
- Download the trained model from Baidu Cloud(dfna), and unzip the files to ./models/
Exemplar commands are listed here for a quick start.
-
To train on facescrub dataset with size of 64 X 64
python Lr-LiVAE.py --mode training
-
Example of generating random samples
python Lr-LiVAE.py --mode generation
-
Example of image inpainting
python Lr-LiVAE.py --mode inpainting
-
Example of face synthesis using z_s and z_u from different images
python Lr-LiVAE-GAN.py --mode exchanging
If this work is useful for your research, please consider citing:
@inproceedings{zheng2019disentangling,
title={Disentangling Latent Space for VAE by Label Relevant/Irrelevant Dimensions},
author={Zheng, Zhilin and Sun, Li},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={12192--12201},
year={2019}
}