███████╗ ██████╗ ██╗███████╗ ██████╗ ██████╗ ██╗ ██╗███████╗██████╗ ██╗ ██╗
██╔════╝ ██╔══██╗██║██╔════╝██╔════╝██╔═══██╗██║ ██║██╔════╝██╔══██╗╚██╗ ██╔╝
█████╗ ██║ ██║██║███████╗██║ ██║ ██║██║ ██║█████╗ ██████╔╝ ╚████╔╝
██╔══╝ ██║ ██║██║╚════██║██║ ██║ ██║╚██╗ ██╔╝██╔══╝ ██╔══██╗ ╚██╔╝
███████╗ ██████╔╝██║███████║╚██████╗╚██████╔╝ ╚████╔╝ ███████╗██║ ██║ ██║
╚══════╝ ╚═════╝ ╚═╝╚══════╝ ╚═════╝ ╚═════╝ ╚═══╝ ╚══════╝╚═╝ ╚═╝ ╚═╝
Some background of the project Discovery in a civil lawsuit is a process where each party turns over documents that are relevant to the case. We improve this process with an utility that helps law professionals classify these documents more efficiently.
We process emails through TF-IDF and LSA and use the output to train our proprietary implementation of random forest.
Documentation
flask_server
data_api.py
: Everything to do with interfacing between our ML backend and the beautiful front end.lib
forest.py
: Entry point into the ML codeweb_new
src
: All of the front end code is in hereemail_filter.py
README.md
: This file!makefile
scenario1Full.py
: Run a full scenario using this file.
At Project Root:
- Install Everything:
make all_dep
- Install Python libs:
make py_dep
- Install NPM Modules:
make web_dep
- Then run
make web
command+t
to make a new terminal tab and runmake -B web
in the new tab at project root and- Navigate to http://localhost:8080/
python3 scenario1Full.py
We used a combination of Kaggle's dataset and Trec's
Ju Yun Kim Dan Mayer Lazar Zamurovic Adam Tigar Micah Nacht Xingfan Xia
Advised by Eric Alexander, Carleton College Computer Science Professor