This repository is an implementation of our work, "Physically Consistent Preferential Bayesian Optimization for Food Arrangement". It contains the deep-fried shrimp arrangement task used in our simulation experiments.
- Ubuntu 18.04 or 20.04
- Nvidia driver > 470
- Docker
- Download and defrost IsaacGym and place it in
./isaacgym
. - Download and defrost CoppeliaSim and place it in
./simulators/assets
. - Setup with Docker
$ sudo docker build -t pcpbo .
- (Optional) Generate X virtual framebuffer for headless
- Install Xvfb
$ sudo apt-get update && sudo apt-get install xvfb
- Run Xvfb
$ Xvfb :2 -screen 0 1024x768x24 &
$ export DISPLAY=:2
- Run docker
$ docker run --rm -it --gpus all -e DISPLAY=$DISPLAY\
-e LOCAL_UID=$(id -u $USER) -e LOCAL_GID=$(id -g $USER)\
-v /tmp/.X11-unix:/tmp/.X11-unix -v $PWD/:/opt/project\
pcpbo
Estimate a preferred arrangement with Physically Consistent Preferential Bayesian Optimization (PCPBO)
(docker)$ python run_pcpbo.py --task deep-fried_shrimp --pref_weight 0.2 0.8
(docker)$ python run_cem.py --task deep-fried_shrimp --pref_weight 0.2 0.8
The implementation of PBBO is based on this repository .