This is an official implemention for “SiamAtt: Siamese attention network for visual tracking”.
- Python 3.7
- PyTorch 1.0.0
- numpy
- CUDA 10
- skimage
- matplotlib
Prepare training dataset, detailed preparations are listed in training_dataset directory.
CUDA_VISIBLE_DEVICES=0,1
python -m torch.distributed.launch \
--nproc_per_node=2 \
--master_port=2333 \
../../tools/train.py --cfg config.yaml
python ../tools/test.py
References
[1]SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks. Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing, Junjie Yan. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
Our SiamAtt tracker is based on PySot. We sincerely thank the authors Bo Li for providing these great works.
If you're using this code in a publication, please cite our paper.
@article{yang2020siamatt,
title={SiamAtt: Siamese attention network for visual tracking},
author={Yang, Kai and He, Zhenyu and Zhou, Zikun and Fan, Nana},
journal={Knowledge-based systems},
volume={203},
pages={106079},
year={2020},
publisher={Elsevier}
}