Skip to content

[MICCAI 2024] Generalized Robust Fundus Photography-based Vision Loss Estimation for High Myopia

Notifications You must be signed in to change notification settings

yanzipei/VF_RED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 

Repository files navigation

Generalized Robust Fundus Photography-based Vision Loss Estimation for High Myopia

This paper is accepted by MICCAI 2024. The preprint version is available on ArXiv.

Implementation

Feature Extraction

Take the pretrained resnet18 as an example, we extract features from fundus photo.

import torch
from torchvision.models import resnet18, ResNet18_Weights
from torchvision import transforms


# load pretrained model
backbone = resnet18(weights=ResNet18_Weights.IMAGENET1K_V1)
backbone.eval()

# remove the last fc layer
backbone.fc = torch.nn.Indentity()

# defined image transform
input_resolution = 384
mean = (0.485, 0.456, 0.406)
std = (0.229, 0.224, 0.225)
transform = transforms.Compose([transforms.Resize(size=input_resolution),
                                transforms.CenterCrop(size=input_resolution),
                                transforms.ToTensor(),
                                transforms.Normalize(mean=mean, std=std)])

# extract features
image_list = load_your_fundus_images()

feat_list = []
for img in image_list:
    img = transform(img)
    feat = backbone(img)
    feat_list.append(feat_list)

Model

The model is the basic MLP, which is defined as follows:

from typing import List
import torch
from torch import nn

class MLP(nn.Module):
    def __init__(self, dim_list: List[int], act_func, bias: bool = True):
        super(MLP, self).__init__()
        assert len(dim_list) >= 2

        encoder = []

        if len(dim_list) == 2:
            self.encoder = nn.Identity()
        else:
            for i in range(len(dim_list) - 2):
                encoder += [nn.Linear(dim_list[i], dim_list[i + 1], bias=bias), act_func]
            self.encoder = nn.Sequential(*encoder)

        self.regressor = nn.Linear(dim_list[-2], dim_list[-1], bias=bias)

    def forward(self, x, return_feat=False):
        feat = self.encoder(x)
        x = self.regressor(feat)

        if return_feat:
            return x, feat
        else:
            return x

    def feature(self, x):
        return self.encoder(x)

For the model that takes the extracted features from pretrained resnet-18, it is defined as follows:

model = MLP(dim_list=[512, 512, 52], act_func=nn.ReLU(inplace=True), bias=True)

Training model with MC-SURE

import torch
from torch import nn

# define MC-SURE
def mc_sure(z: torch.Tensor, model: nn.Module, sigma: torch.Tensor, eps: float):
    """
    MC-SURE for batch.
    :param z: feature tensor, shape: [N, K]
    :param model: the denoising model
    :param sigma: sigma vector, shape: [N], sigma for each feature
    :param eps: epsilon, float.
    :return: sure loss vector, shape: [N].
    """
    assert z.ndim == 2  # [N, K]
    assert sigma.ndim == 2  # [N, 1]
    assert z.shape[0] == sigma.shape[0]

    K = z.shape[1]
    var = sigma ** 2  # [N, 1]
    output = model(z)

    b = torch.randn(z.shape, device=z.device)

    z_hat = z + b * eps
    output_hat = model(z_hat)

    loss = ((z - output) ** 2).mean(dim=1) - var + 2 * var * (b * (output_hat - output)).sum(dim=1) / (K * eps)  # [N]

    return loss

lr = 1e-3
optimizer = torch.optim.Adam(model.parameters(), lr=lr)

eps = 1e-5
lam = 1.0
model.train()

# training
for feat, vf, sigma in dataloader:
    # feat: [N, K], batch of extracted feature vector
    # vf: [N, M], batch of target VF vector
    # sigma: [N, 1], batch of sigma scalar, which is estimated on feat.

    pred_vf = model(feat)

    pred_loss = ((pred_vf - vf) ** 2).mean(1)  # [N]
    sure_loss = mc_sure(feat, model.encoder, sigma, eps)  # [N]

    loss = pred_loss + lam * sure_loss
    loss = loss.mean()

    # compute gradient and do SGD step
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

Repos for baselines

EMD & SOFT & OLL: https://github.com/glanceable-io/ordinal-log-loss

CORAL: https://github.com/Raschka-research-group/coral-cnn

VF-HM: https://github.com/yanzipei/VF-HM

OE: https://github.com/needylove/OrdinalEntropy

Citation

If this work is useful for your research, please kindly cite it:

@inproceedings{yan2024vfred,
title={Generalized robust fundus photography-based vision loss estimation for high myopia},
author={Yan, Zipei and Liang, Zhile and Liu, Zhengji and Wang, Shuai and Chun, Rachel and Li, Jizhou and Kee, Chea-su and Liang, Dong},
booktitle={MICCAI},
year={2024},
}

About

[MICCAI 2024] Generalized Robust Fundus Photography-based Vision Loss Estimation for High Myopia

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published