Skip to content

yassienshaalan/L2RP

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

L2RP

License

Learning to Rank Items of Minimal Reviews Using Weak Supervision

  • L2RP is a learning to rank technique that can be used in ranking products based on customer reviews. The main idea is to learn a ranking function from products having many reviews to transfer this knolwedge to product categories having less reviews in a weakly supervised setting.
    • More deatils will can be found in the original paper link.

1. Prerequisities

  • Python 3.7
  • Numpy==1.9.1
  • scipy==0.14
  • Tensorflow==1.13.0
  • Keras==1.0.6
  • Scikit-learn==1.18.5
  • Matplotlib==3.2.2
  • Java

2. Getting Started

  • Will be provided soon...

3. License

  • DTOPS is only distributed under Apache-2.0 License Copyright (c) 2020.
  • Contact: Yassien Shaalan

4. Citation

If you use this work, please cite:

{
title={Learning to Rank Items of Minimal Reviews Using Weak Supervision},
author={Shaalan,Yassien, Zhang, J., Chan, J.},
booktitle={PAKDD },
pages={631-643},
year={2018}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages