Skip to content

PyDistMesh: A Simple Mesh Generator in Python

License

GPL-3.0, Unknown licenses found

Licenses found

GPL-3.0
LICENSE
Unknown
COPYING.txt
Notifications You must be signed in to change notification settings

ycoudier/pydistmesh

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyDistMesh: A Simple Mesh Generator in Python

PyDistMesh is a simple Python code for generating unstructured triangular and tetrahedral meshes using signed distance functions. It intends to have the same functionality as and similar interface to the MATLAB-based DistMesh. Like DistMesh, upon which it is based, PyDistMesh is distributed under the GNU GPL.

2-D Examples

  • Uniform Mesh on Unit Circle:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> fd = lambda p: np.sqrt((p**2).sum(1))-1.0
    >>> p, t = dm.distmesh2d(fd, dm.huniform, 0.2, (-1,-1,1,1))
    
  • Rectangle with circular hole, refined at circle boundary:

    >>> import distmesh as dm
    >>> fd = lambda p: dm.ddiff(dm.drectangle(p,-1,1,-1,1),
    ...                         dm.dcircle(p,0,0,0.5))
    >>> fh = lambda p: 0.05+0.3*dm.dcircle(p,0,0,0.5)
    >>> p, t = dm.distmesh2d(fd, fh, 0.05, (-1,-1,1,1),
    ...                      [(-1,-1),(-1,1),(1,-1),(1,1)])
    

3-D Examples

  • 3-D Unit ball:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> fd = lambda p: np.sqrt((p**2).sum(1))-1.0
    >>> p, t = dm.distmeshnd(fd, dm.huniform, 0.2, (-1,-1,-1, 1,1,1))
    
  • Cylinder with hole:

    >>> import distmesh as dm
    >>> import numpy as np
    >>> def fd10(p):
    ...     r, z = np.sqrt(p[:,0]**2 + p[:,1]**2), p[:,2]
    ...     d1, d2, d3 = r-1.0, z-1.0, -z-1.0
    ...     d4, d5 = np.sqrt(d1**2+d2**2), np.sqrt(d1**2+d3**2)
    ...     d = dm.dintersect(dm.dintersect(d1, d2), d3)
    ...     ix = (d1>0)*(d2>0); d[ix] = d4[ix]
    ...     ix = (d1>0)*(d3>0); d[ix] = d5[ix]
    ...     return dm.ddiff(d, dm.dsphere(p, 0,0,0, 0.5))
    >>> def fh10(p):
    ...     h1 = 4*np.sqrt((p**2).sum(1))-1.0
    ...     return np.minimum(h1, 2.0)
    >>> p, t = dm.distmeshnd(fd10, fh10, 0.1, (-1,-1,-1, 1,1,1))
    

Demos

For a quick demonstration, run:

$ python -m distmesh.demo2d

or:

$ python -m distmesh.demond

Dependencies

PyDistMesh is compatible with both Python 2 and Python 3. (The author has only tested it in Python 2.7 and Python 3.2). It requires several common Python packages:

Building the package requires a C compiler and LAPACK. Cython, if available, can be used to rebuild the extension module bindings.

References

The DistMesh algorithm is described in the following two references. If you use the algorithm in a program or publication, please acknowledge its authors by adding a reference to the first paper below.

  • P.-O. Persson, G. Strang, A Simple Mesh Generator in MATLAB. SIAM Review, Volume 46 (2), pp. 329-345, June 2004 (PDF)
  • P.-O. Persson, Mesh Generation for Implicit Geometries. Ph.D. thesis, Department of Mathematics, MIT, Dec 2004 (PDF)

About

PyDistMesh: A Simple Mesh Generator in Python

Resources

License

GPL-3.0, Unknown licenses found

Licenses found

GPL-3.0
LICENSE
Unknown
COPYING.txt

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 87.3%
  • Cython 6.6%
  • C 6.1%