Skip to content

yilun-wu/MetaL-Benchmark

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MetaL-Benchmark

Accompanying Code for "ALPaCA vs. GP-based Prior Learning: A comparison between two Bayesian Meta-Learning Algorithms". Link

The report investigates similarites and disparities among two recently published Bayesian meta-learning methods: ALPaCA (Harrison et al., 2018) and PACOH (Rothfuss et al., 2020). Theoratical analysis as well as empricial benchmarks (produced by the code in this repo) are presented.

Installation

After cloning the repository, first checkout the submodules:

git submodule update --init --recursive

Then to install requirements, run

pip install -r lib/ALPaCA/requirements.txt lib/PACOH/requirements.txt

Running the code

The experiments presented in the paper can be run from the jupyter notebook under src/exp-supervised-benchmark.ipynb The script will save the trained models in a folder name hashed by experiment hyper-parameters under data/. The experiment runs presented in the paper are with the following hashes available at https://www.polybox.ethz.ch/index.php/s/fSqUUCSjfyjcUt8.

Model Sinusoid-E Sinusoid-H Cauchy Swissfel
Hash LL RMSE Calib Hash LL RMSE Calib Hash LL RMSE Calib Hash LL RMSE Calib
GP+SE+NN 556ed7df63f1b672038567f03681f498 0.313 0.315 0.120 afd05d82a75fe279cfc0785d70abcfbe -0.112 0.644 0.108 d51b8f751778e3805a91dc9f20a8bd7a 0.394 0.200 0.060 dcd464ceee4071a362a3cd52b93d57e6 -0.447 0.368 0.086
GP+NN+NN b234101b8728569befd823ffc45ffcc2 0.596 0.287 0.124 b8306037d50693b96a93d79b2952546a -0.125 0.632 0.108 e6d5c1f43644b42b69d456068ed1f5d2 0.185 0.217 0.069 b141d967a1bc4e14fc444f42aaee220f -0.763 0.443 0.057
GP+NNL+NN afed0fa8f682754c46cc6870eebef424 0.122 0.248 0.130 e212f5e2efa7e62b3034d970cdbae158 -1.056 0.743 0.110 4a17c486fda36a836fa95c8102057414 -0.015 0.239 0.074 bbd17d55149b77eb8d4f7b1bd340fcbf -1.228 0.663 0.076
GP+NNL+NNOne e90150fdac160c6488d6f5900dddcce 0.141 0.218 0.142 47bd412edfd12b41d40a5169399af0e6 -1.204 0.863 0.100 0de7c4f47bbddbbe92e937817c48aa54 0.016 0.230 0.076 d420c137b59ad709f5272f6bd4aa65b6 -0.645 0.459 0.054
BLR-Prior-Full 584e9c6f3963f0b2a4626a14f54c8acd -0.203 0.340 0.118 51edfcd7353c74261817cd06f40643be -1.203 0.884 0.100 c10e083c86229b284fc0ce9b374024df 0.011 0.225 0.078 760a8ed714377a28e6d1e276e73255ae -0.826 0.479 0.074
BLR-Prior-NF 6f3ae0ef48fb343b17233554d9f49cc2 -1.21 0.748 0.173 a80d44b16e63645932be9dcd1fd810e5 -1.302 0.949 0.102 6fa8a0c3a0ce603dc74ea87f64c7fa18 -0.308 0.237 0.112 a0a49a393d1a13463cb5b99de4d85762 -1.768 0.641 0.146
BLR-Post-Full-C 5fc3c5d32a28895182f9a22b4bb1b106 -0.45 0.438 0.111 0e80925297c4477f60ba960369ac9b14 -1.266 0.919 0.096 e74b047ea2dbaa23f69ef93c495c49ec 0.044 0.231 0.075 b047ed2052679791873486d582434e9c -0.979 0.630 0.078
BLR-Post-Full-NC c2283feb46551cd0601f0b04951b321a -0.373 0.404 0.116 faf9956480fbcfbaa509906ba796b703 -1.226 0.905 0.100 ed0b5b9fdf2c040cf6142527f9b7dc03 -0.038 0.246 0.080 ac57d7f4fa73259bd39a0aa227f7bed7 -1.892 0.828 0.139
BLR-Post-NF-NC 756a425c5c6921b89e6f804314c272fd -0.587 0.481 0.132 73a1e72c5c6ac8a7fb727502de72a32d -1.264 0.944 0.098 bafd4b87d2abb196f8d4479aca329e48 -0.193 0.234 0.102 3afd3884aa170b49c929c8d0cc0c385f -1.406 0.967 0.143

Note

The Swissfel dataset has not been made publicly available.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published