Accompanying Code for "ALPaCA vs. GP-based Prior Learning: A comparison between two Bayesian Meta-Learning Algorithms". Link
The report investigates similarites and disparities among two recently published Bayesian meta-learning methods: ALPaCA (Harrison et al., 2018) and PACOH (Rothfuss et al., 2020). Theoratical analysis as well as empricial benchmarks (produced by the code in this repo) are presented.
After cloning the repository, first checkout the submodules:
git submodule update --init --recursive
Then to install requirements, run
pip install -r lib/ALPaCA/requirements.txt lib/PACOH/requirements.txt
The experiments presented in the paper can be run from the jupyter notebook under src/exp-supervised-benchmark.ipynb
The script will save the trained models in a folder name hashed by experiment hyper-parameters under data/
.
The experiment runs presented in the paper are with the following hashes available at https://www.polybox.ethz.ch/index.php/s/fSqUUCSjfyjcUt8.
Model | Sinusoid-E | Sinusoid-H | Cauchy | Swissfel | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hash | LL | RMSE | Calib | Hash | LL | RMSE | Calib | Hash | LL | RMSE | Calib | Hash | LL | RMSE | Calib | |
GP+SE+NN | 556ed7df63f1b672038567f03681f498 | 0.313 | 0.315 | 0.120 | afd05d82a75fe279cfc0785d70abcfbe | -0.112 | 0.644 | 0.108 | d51b8f751778e3805a91dc9f20a8bd7a | 0.394 | 0.200 | 0.060 | dcd464ceee4071a362a3cd52b93d57e6 | -0.447 | 0.368 | 0.086 |
GP+NN+NN | b234101b8728569befd823ffc45ffcc2 | 0.596 | 0.287 | 0.124 | b8306037d50693b96a93d79b2952546a | -0.125 | 0.632 | 0.108 | e6d5c1f43644b42b69d456068ed1f5d2 | 0.185 | 0.217 | 0.069 | b141d967a1bc4e14fc444f42aaee220f | -0.763 | 0.443 | 0.057 |
GP+NNL+NN | afed0fa8f682754c46cc6870eebef424 | 0.122 | 0.248 | 0.130 | e212f5e2efa7e62b3034d970cdbae158 | -1.056 | 0.743 | 0.110 | 4a17c486fda36a836fa95c8102057414 | -0.015 | 0.239 | 0.074 | bbd17d55149b77eb8d4f7b1bd340fcbf | -1.228 | 0.663 | 0.076 |
GP+NNL+NNOne | e90150fdac160c6488d6f5900dddcce | 0.141 | 0.218 | 0.142 | 47bd412edfd12b41d40a5169399af0e6 | -1.204 | 0.863 | 0.100 | 0de7c4f47bbddbbe92e937817c48aa54 | 0.016 | 0.230 | 0.076 | d420c137b59ad709f5272f6bd4aa65b6 | -0.645 | 0.459 | 0.054 |
BLR-Prior-Full | 584e9c6f3963f0b2a4626a14f54c8acd | -0.203 | 0.340 | 0.118 | 51edfcd7353c74261817cd06f40643be | -1.203 | 0.884 | 0.100 | c10e083c86229b284fc0ce9b374024df | 0.011 | 0.225 | 0.078 | 760a8ed714377a28e6d1e276e73255ae | -0.826 | 0.479 | 0.074 |
BLR-Prior-NF | 6f3ae0ef48fb343b17233554d9f49cc2 | -1.21 | 0.748 | 0.173 | a80d44b16e63645932be9dcd1fd810e5 | -1.302 | 0.949 | 0.102 | 6fa8a0c3a0ce603dc74ea87f64c7fa18 | -0.308 | 0.237 | 0.112 | a0a49a393d1a13463cb5b99de4d85762 | -1.768 | 0.641 | 0.146 |
BLR-Post-Full-C | 5fc3c5d32a28895182f9a22b4bb1b106 | -0.45 | 0.438 | 0.111 | 0e80925297c4477f60ba960369ac9b14 | -1.266 | 0.919 | 0.096 | e74b047ea2dbaa23f69ef93c495c49ec | 0.044 | 0.231 | 0.075 | b047ed2052679791873486d582434e9c | -0.979 | 0.630 | 0.078 |
BLR-Post-Full-NC | c2283feb46551cd0601f0b04951b321a | -0.373 | 0.404 | 0.116 | faf9956480fbcfbaa509906ba796b703 | -1.226 | 0.905 | 0.100 | ed0b5b9fdf2c040cf6142527f9b7dc03 | -0.038 | 0.246 | 0.080 | ac57d7f4fa73259bd39a0aa227f7bed7 | -1.892 | 0.828 | 0.139 |
BLR-Post-NF-NC | 756a425c5c6921b89e6f804314c272fd | -0.587 | 0.481 | 0.132 | 73a1e72c5c6ac8a7fb727502de72a32d | -1.264 | 0.944 | 0.098 | bafd4b87d2abb196f8d4479aca329e48 | -0.193 | 0.234 | 0.102 | 3afd3884aa170b49c929c8d0cc0c385f | -1.406 | 0.967 | 0.143 |
The Swissfel dataset has not been made publicly available.