example1 | example2 |
---|---|
https://yja938882.github.io/d3_practice/k_means.html
<script type="text/javascript" src="/* path */k_means.js"></script>
var Data = [ [0.5, 0.7], [3.6, 0.11], ... ];
- K_Means(args)
var kmeans = K_Means( { k : 3, data : [[0.5], [0.6], ... ] });
args
Object
k
Number : # of clusters.data
Array : Array of data points.
- clustering(dist, callback1, callback2, callback3)
/* Clustring. */ kmeans.clustering(kmeans.euclidean, render1, render2, render3);
dist
Function : Distance function.callback1
Function : Function that is called after Assignment Step.callback2
Function : Function that is called after Update Step.callback3
Function : Function that is called after clustering.
- setNearestCluster(dist, callback)
/* Assignment Step. Assign each observation to the cluster. */ kmeans.setNearsetCluster(kmeans.euclidean, render);
dist
Function : Distance function.callback
Function : Function that is called after Update Step.
- updateCentroid(callback)
/* Update Step. Calculate the new means to be the centroids */ kmeans.updateCentroid(render);
callback
Function : Function that is called after Update Step.
- euclidean(pointA, pointB)
/* Euclidean distance function. */ var dist = kmeans.euclidean(pointA, pointB);
pointA
Array<Number> : point.pointB
Array<Number> : point.
- manhattan(pointA, pointB)
/* Manhattan distance function. */ var dist = kmeans.manhattan( pointA, pointB);
pointA
Array<Number> : point.pointB
Array<Number> : point.