A PyTorch implementation for the paper below: AHD-SLE: Anomalous Hyperedge Detection on Hypergraph Symmetric Line Expansion
-
data/
: under this folder, we provide several hypergraph datasets- dblp, iAF1260b, iJO1366, reverb, uspto
- *.edges.neg : negative hyperedge dataset, format: node_id, hyperedge_id
- *.edges.pos : positive hyperedge dataset, format: node_id, hyperedge_id
- *.npz : node feature, it a sparse matrix
-
layers.py
: standard GCN layers -
logutil.py
: logging function -
main.py
: the running script -
models.py
: AHD-SLE model implementations -
SLE.py
: the SLE transformation script -
utils.py
: auxiliary functions
# select a dataset from dblp, iAF1260b, iJO1366, reverb, uspto
python main.py --dataset [DATASET]