Skip to content

yshen22/FedMM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository contains the code accompanying the AAMAS2023 paper " FedMM: A Communication Efficient Solver for Federated Adversarial Domain Adaptation" Paperlink:

network structure

Requirements to run the code:


  1. Python 3.7
  2. Tensorflow 1.14.0
  3. numpy 1.20.3
  4. tqdm

Download dataset:


Download mnistm data:

curl -L -O http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz

Preprocess mnistm dataset

python create_mnistm.py 

Experiments on Federated Domain Adaptation:


Usage for the Proposed FedMM on DANN loss:

python train.py -max_iter=15000 -lambda1_decay=1.05 -adv_loss='DANN' 

Usage for the Proposed FedMM on MDD loss:

python train.py -max_iter=50000 -lambda1_decay=1.01 -adv_loss='MDD' 

Usage for the Proposed FedMM on CDAN loss

python train.py -max_iter=30000 -lambda1_decay=1.02 -adv_loss='CDAN'

Reference


@inproceedings{shen2023fedmm,
  title={FedMM: A Communication Efficient Solver for Federated Adversarial Domain Adaptation},
  author={Shen, Yan and Du, Jian and Zhao, Han and Ji, Zhanghexuan and Ma, Chunwei and Gao, Mingchen},
  booktitle={Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent Systems},
  pages={1808--1816},
  year={2023}
}


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages