-
Notifications
You must be signed in to change notification settings - Fork 45
/
generate_mod_LR_bic.py
117 lines (98 loc) · 4.32 KB
/
generate_mod_LR_bic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import sys
import cv2
import numpy as np
import torch
try:
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from data.util import imresize_np
from utils import util
except ImportError:
pass
def generate_mod_LR_bic():
# set parameters
up_scale = 4
mod_scale = 4
# set data dir
sourcedir = '/mnt/yjchai/SR_data/Set5' #'/mnt/yjchai/SR_data/DIV2K_test_HR' #'/mnt/yjchai/SR_data/Flickr2K/Flickr2K_HR'
savedir = '/mnt/yjchai/SR_data/Set5_test' #'/mnt/yjchai/SR_data/DIV2K_test' #'/mnt/yjchai/SR_data/Flickr2K_train'
# set random seed
util.set_random_seed(0)
# load PCA matrix of enough kernel
print('load PCA matrix')
pca_matrix = torch.load('/media/sdc/yjchai/IKC/codes/pca_matrix.pth', map_location=lambda storage, loc: storage)
print('PCA matrix shape: {}'.format(pca_matrix.shape))
saveHRpath = os.path.join(savedir, 'HR', 'x' + str(mod_scale))
saveLRpath = os.path.join(savedir, 'LR', 'x' + str(up_scale))
saveBicpath = os.path.join(savedir, 'Bic', 'x' + str(up_scale))
saveLRblurpath = os.path.join(savedir, 'LRblur', 'x' + str(up_scale))
if not os.path.isdir(sourcedir):
print('Error: No source data found')
exit(0)
if not os.path.isdir(savedir):
os.mkdir(savedir)
if not os.path.isdir(os.path.join(savedir, 'HR')):
os.mkdir(os.path.join(savedir, 'HR'))
if not os.path.isdir(os.path.join(savedir, 'LR')):
os.mkdir(os.path.join(savedir, 'LR'))
if not os.path.isdir(os.path.join(savedir, 'Bic')):
os.mkdir(os.path.join(savedir, 'Bic'))
if not os.path.isdir(os.path.join(savedir, 'LRblur')):
os.mkdir(os.path.join(savedir, 'LRblur'))
if not os.path.isdir(saveHRpath):
os.mkdir(saveHRpath)
else:
print('It will cover ' + str(saveHRpath))
if not os.path.isdir(saveLRpath):
os.mkdir(saveLRpath)
else:
print('It will cover ' + str(saveLRpath))
if not os.path.isdir(saveBicpath):
os.mkdir(saveBicpath)
else:
print('It will cover ' + str(saveBicpath))
if not os.path.isdir(saveLRblurpath):
os.mkdir(saveLRblurpath)
else:
print('It will cover '+ str(saveLRblurpath))
filepaths = sorted([f for f in os.listdir(sourcedir) if f.endswith('.png')])
print(filepaths)
num_files = len(filepaths)
kernel_map_tensor = torch.zeros((num_files, 1, 10)) # each kernel map: 1*10
# prepare data with augementation
for i in range(num_files):
filename = filepaths[i]
print('No.{} -- Processing {}'.format(i, filename))
# read image
image = cv2.imread(os.path.join(sourcedir, filename))
width = int(np.floor(image.shape[1] / mod_scale))
height = int(np.floor(image.shape[0] / mod_scale))
# modcrop
if len(image.shape) == 3:
image_HR = image[0:mod_scale * height, 0:mod_scale * width, :]
else:
image_HR = image[0:mod_scale * height, 0:mod_scale * width]
# LR_blur, by random gaussian kernel
img_HR = util.img2tensor(image_HR)
C, H, W = img_HR.size()
# sig_list = [1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2]
sig = 2.6
prepro = util.SRMDPreprocessing(up_scale, pca_matrix, random=False, para_input=10, kernel=21, noise=False,
cuda=True, sig=sig, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3,
rate_cln=0.2, noise_high=0.0) #random(sig_min, sig_max) | stable kernel(sig)
LR_img, ker_map = prepro(img_HR.view(1, C, H, W))
image_LR_blur = util.tensor2img(LR_img)
cv2.imwrite(os.path.join(saveLRblurpath, 'sig{}_'.format(str(sig)) + filename), image_LR_blur)
# LR
image_LR = imresize_np(image_HR, 1 / up_scale, True)
# bic
image_Bic = imresize_np(image_LR, up_scale, True)
cv2.imwrite(os.path.join(saveHRpath, filename), image_HR)
cv2.imwrite(os.path.join(saveLRpath, filename), image_LR)
cv2.imwrite(os.path.join(saveBicpath, filename), image_Bic)
kernel_map_tensor[i] = ker_map
# save dataset corresponding kernel maps
torch.save(kernel_map_tensor, './Set5_sig2.6_kermap.pth')
print("Image Blurring & Down smaple Done: X"+str(up_scale))
if __name__ == "__main__":
generate_mod_LR_bic()