This is a prototype interface for ANI-1x neural network potential for The Atomic Simulation Environment (ASE). Current ANI-1x potential implements CHNO elements.
##REQUIREMENTS:
- Python 3.6 (we recommend Anaconda distribution)
- Modern NVIDIA GPU, compute capability 5.0 of newer.
- CUDA 9.0
- ASE
- Modified ased3 for D3 van der Waals correction (Optional)
- MOPAC2012 or MOPAC2016 for some examples to compare results (Optional)
Clone this repository into desired folder and add environmental variables from bashrc_example.sh
to your .bashrc
.
For use cases please refer to examples folder with several iPython notebooks
https://github.com/isayev/ANI1_dataset
https://github.com/isayev/COMP6
If you use this code, please cite:
Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg. ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost. Chemical Science, 2017, DOI: 10.1039/C6SC05720A
Justin S. Smith, Olexandr Isayev, Adrian E. Roitberg. ANI-1, A data set of 20 million calculated off-equilibrium conformations for organic molecules. Scientific Data, 4, Article number: 170193, DOI: 10.1038/sdata.2017.193 https://www.nature.com/articles/sdata2017193
Justin S. Smith, Ben Nebgen, Nicholas Lubbers, Olexandr Isayev, Adrian E. Roitberg. Less is more: sampling chemical space with active learning. arXiv, 2018, DOI: [arXiv:1801.09319] (https://arxiv.org/abs/1801.09319)