-
Notifications
You must be signed in to change notification settings - Fork 1
/
camera_p2pnet.py
199 lines (123 loc) · 5.7 KB
/
camera_p2pnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import cv2
import json
import argparse
import datetime
import random
import time
from pathlib import Path
import torch
import torchvision.transforms as standard_transforms
import numpy as np
import matplotlib.pyplot as plt
from threading import Thread, Event
from PIL import Image
from crowd_datasets import build_dataset
from engine import *
from models import build_model
import os
import warnings
def get_args_parser():
parser = argparse.ArgumentParser('Set parameters for P2PNet evaluation', add_help=False)
# * Backbone
parser.add_argument('--backbone', default='vgg16_bn', type=str,
help="name of the convolutional backbone to use")
parser.add_argument('--row', default=2, type=int,
help="row number of anchor points")
parser.add_argument('--line', default=2, type=int,
help="line number of anchor points")
parser.add_argument('--output_dir', default='',
help='path where to save')
parser.add_argument('--weight_path', default='',
help='path where the trained weights saved')
parser.add_argument('--gpu_id', default=0, type=int, help='the gpu used for evaluation')
return parser
parser = argparse.ArgumentParser('P2PNet evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
device = torch.device('cuda')
# get the P2PNet
model = build_model(args)
# move to GPU
model.to(device)
# load trained model
#using Args
#Loading file directly
checkpoint = torch.load(Path('/home/zaki/Documents/Master/Code/image/P2PNet/CrowdCounting-P2PNet-main(mycode)/weights/SHTechA.pth'), map_location='cpu')
model.load_state_dict(checkpoint['model'])
# convert to eval mode
model.eval()
# create the pre-processing transform
transform = standard_transforms.Compose([standard_transforms.ToTensor(),standard_transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),])
class VideoCamera(object):
def __init__(self,fileName):
# Using OpenCV to capture from device 0. If you have trouble capturing
# from a webcam, comment the line below out and use a video file
# instead.
if (fileName ==''):
self.video = cv2.VideoCapture(0)
else:
self.video = cv2.VideoCapture(fileName)
# self.video = cv2.resize(self.video,(840,640))
# If you decide to use video.mp4, you must have this file in the folder
# as the main.py.
# self.video = cv2.VideoCapture('video.mp4')
def __del__(self):
self.video.release()
def get_frame(self):
cap =self.video
fourcc = cv2.VideoWriter_fourcc(*'XVID')
#fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
ret, frame = cap.read()
print(frame.shape)
'''out video'''
scale_factor = 0.4
width = frame.shape[1] #output size
height = frame.shape[0] #output size
#out = cv2.VideoWriter('./demo.avi', fourcc, 30, (width, height))
#out = cv2.VideoWriter('./demo.avi', fourcc, 30, (1280, 1280))
while True:
try:
ret, frame = cap.read()
new_width = width // 128 * 128
new_height = height // 128 * 128
#frame = imutils.resize(frame,width=int(new_width),height=int(new_height))
scale_factor = 0.4
frame = cv2.resize(frame, (0, 0), fx=scale_factor, fy=scale_factor)
img_raw= frame.copy()
ori_img = frame.copy()
except:
print("Test End")
cap.release()
break
frame = frame.copy()
# pre-proccessing
img = transform(frame)
samples = torch.Tensor(img).unsqueeze(0)
samples = samples.to(device)
with torch.no_grad():
# run inference
outputs = model(samples)
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
threshold = 0.5
# filter the predictions
points = outputs_points[outputs_scores > threshold].detach().cpu().numpy().tolist()
predict_cnt = int((outputs_scores > threshold).sum())
outputs_scores = torch.nn.functional.softmax(outputs['pred_logits'], -1)[:, :, 1][0]
outputs_points = outputs['pred_points'][0]
print("Number of persons in the picture is: ",predict_cnt)
# draw the predictions
size = 2
img_to_draw = img_raw
for p in points:
img_to_draw = cv2.circle(img_raw , (int(p[0]), int(p[1])), size, (0, 0, 255), -1)
#res = np.vstack((ori_img, img_to_draw))
#cv2.putText(res, "Count:" + str(predict_cnt), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
# save the visualized image
#cv2.imwrite('./demo.jpg', res)
'''write in out_video'''
#res = cv2.resize(res, (1280,1280))
#out.write(res)
img_to_draw = cv2.resize(img_to_draw, (1500,720))
cv2.putText(img_to_draw, "Count:" + str(predict_cnt), (30, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
ret, jpeg = cv2.imencode('.jpg', img_to_draw)
return jpeg.tobytes()