Skip to content

zanghu/nn_imp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Neural Network

C语言实现的神经网络(Neural Network)

1.计划

第1阶段: 实现 MLP、CONV、GAN、BERT 等基本模型

第2阶段: 分析、研究新的模型和方法

2.进度

2021.03.01

1.完成训练过程参数对比代码;

2.TODO: 找出参数值不一致的原因。

2021.02.24

1.修复: (1)epoch最后一个batch运行时报错的问题;(2)目前的lr衰减算法有误,会导致衰减系数始终为 1/batch_size,不能根据batch实际大小b_used动态调整。

2.增加每个epoch计算训练集分类成功率的功能。

2021.02.23

1.增加从numpy.savetxt导出的文件中读取权重作为linear_layer权重的方法;

2.新增功能通过单元测试和集成测试,很神奇的relu层训练390轮(1个完整epoch没有出现inf或nan);

3.TODO: a.)BUG: epoch最后一个batch运行时报错;b.)BUG: 目前的lr衰减算法有误,会导致衰减系数始终为 1/batch_size,不能根据batch实际大小b_used动态调整。

2021.02.22

1.增加relu_layer;

2.使用relu作为激活函数进行测试,训练参数模仿ccc。

2021.02.18

1.修改探针类和层类增加了运行过程中导出数据到指定目录的功能;

2.修改MNIST测试案例导出参数和梯度数据;

3.TODO: 与python版训练过程的参数和数据比较,找出权重上溢问题的原因。

2021.02.17

1.修复数据集最后一个batch样本不足batch_size报错的问题;

2.增加日志记录功能;

3.Layer类支持命名,用于DEBUG;

4.现在MNIST数据集直接提供float32和onehot的数据和类标,无需用户手动转换;

5.修改了MNIST数据集的normalization预处理方法,参考了网上公开资料;

6.验证python版本与处理结果与C版本处理结果数据的一致性,误差约为5e-7。

7.TODO: 目前尚存在训练过程梯度和参数上溢的问题。

2021.02.16

1.MNIST数据集增加对训练迭代数据、onehot类标的支持;

2.增加了探针,方便数据统计;

3.mlp模型集成测试案例补充了训练迭代过程。

4.现在训练参数不再和模型绑定,而是再每一轮迭代中ing和探针一起作为参数传给模型;

5.测试循环迭代,目前初步调通。

6.测试中尚存的问题:(1)最后一个batch样本数不足时会出现SIGSEGV;(2)一个epoch的不同iter下ce_cost没有明显下降。

2021.02.15

1.重新设计目录结构;

2.新增MNIST数据集读取,补充测试案例。

2021.02.14

1.将每一层的线性变换和非线性变换拆分成两个独立的层;

2.完成代价函数;

3.完成网络层间关联;

4.Layer, Cost现在分别是层类和代价类的基类;

5.完成交叉熵代价CECost类和SoftMaxLayer类;

6.统一函数返回值为错误码;

7.新增了XXX_GOTO宏,配合函数内使用goto进行异常处理时的资源释放;

8.增加了测试用例。

2021.02.13

1.完成全连接层反向传播的参数梯度计算;

2.完成全连接层forward、backward、update方法;

3.引入YOLOv2的GEMM计算。

2021.02.12

1.创建仓库。