Skip to content
/ filter Public

A program that applies filters to BMPs, as per the below.

Notifications You must be signed in to change notification settings

zeminem/filter

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A program that applies filters to BMPs, as per the below.

USAGE:

You can run the program by running:

$ ./filter -g images/yard.bmp out.bmp

which takes the image at images/yard.bmp, and generates a new image called out.bmp after running the pixels through the grayscale function. Call the letter for the respective filter:

Grayscale -g Sepia -s Reflection -r

EXPLANATION:

Image Filtering What does it even mean to filter an image? You can think of filtering an image as taking the pixels of some original image, and modifying each pixel in such a way that a particular effect is apparent in the resulting image.

Grayscale One common filter is the “grayscale” filter, where we take an image and want to convert it to black-and-white. How does that work?

Recall that if the red, green, and blue values are all set to 0x00 (hexadecimal for 0), then the pixel is black. And if all values are set to 0xff (hexadecimal for 255), then the pixel is white. So long as the red, green, and blue values are all equal, the result will be varying shades of gray along the black-white spectrum, with higher values meaning lighter shades (closer to white) and lower values meaning darker shades (closer to black).

So to convert a pixel to grayscale, we just need to make sure the red, green, and blue values are all the same value. But how do we know what value to make them? Well, it’s probably reasonable to expect that if the original red, green, and blue values were all pretty high, then the new value should also be pretty high. And if the original values were all low, then the new value should also be low.

In fact, to ensure each pixel of the new image still has the same general brightness or darkness as the old image, we can take the average of the red, green, and blue values to determine what shade of grey to make the new pixel.

If you apply that to each pixel in the image, the result will be an image converted to grayscale.

Sepia Most image editing programs support a “sepia” filter, which gives images an old-timey feel by making the whole image look a bit reddish-brown.

An image can be converted to sepia by taking each pixel, and computing new red, green, and blue values based on the original values of the three.

There are a number of algorithms for converting an image to sepia, but for this problem, we’ll ask you to use the following algorithm. For each pixel, the sepia color values should be calculated based on the original color values per the below.

sepiaRed = .393 * originalRed + .769 * originalGreen + .189 * originalBlue sepiaGreen = .349 * originalRed + .686 * originalGreen + .168 * originalBlue sepiaBlue = .272 * originalRed + .534 * originalGreen + .131 * originalBlue

Of course, the result of each of these formulas may not be an integer, but each value could be rounded to the nearest integer. It’s also possible that the result of the formula is a number greater than 255, the maximum value for an 8-bit color value. In that case, the red, green, and blue values should be capped at 255. As a result, we can guarantee that the resulting red, green, and blue values will be whole numbers between 0 and 255, inclusive.

Reflection Some filters might also move pixels around. Reflecting an image, for example, is a filter where the resulting image is what you would get by placing the original image in front of a mirror. So any pixels on the left side of the image should end up on the right, and vice versa.

Note that all of the original pixels of the original image will still be present in the reflected image, it’s just that those pixels may have rearranged to be in a different place in the image.

About

A program that applies filters to BMPs, as per the below.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published