There are two steps for evaluating pretrained ZeroVL model.
- Preparing image classification data (e.g., ImageNet) and downloading pre-trained checkpoints.
- Modifying experiment configurations for your environment.
The training and validation data should be placed in the "data" folder, and the expected structure is as followed:
CLS-LOC
|
└───train
│ └───n01440764
│ | │ n01440764_10026.JPEG
│ | │ ...
| |
| └───n01739381
│ │ n01739381_1212.JPEG
│ │ ...
│
└───val
│ └───n01440764
│ | │ ILSVRC2012_val_00000293.JPEG
│ | │ ...
| |
| └───n01739381
│ │ ILSVRC2012_val_00001108.JPEG
│ │ ...
If the data is placed in other folders, you should revise the 'data.data_path' in yaml configs.
If checkpints and datasets are ready, you could run the following scripts for linear probing:
python3 launch.py --task=linear_prob \
--cfg=configs/linear_prob/imagenet.yaml \
ckpt.external_resume=${path_to_ckpt} \
data.data_path=${path_to_data}