The implementation is built on the pytorch implementation of faster-rcnn.pytorch, please refer to the original project to set up the environment.
- Python 2.7 or 3.6
- Pytorch 0.4.0
- CUDA 8.0 or higher
- PASCAL_VOC 07+12: Please refer py-faster-rcnn for constructing PASCAL VOC Datasets.
- WaterColor: Please refer Cross Domain Detection .
- Night-time(Detrac-night): TBA.
- Citysscape, FoggyCityscape: Please refer Cityscape.
- KITTI: Please refer KITTI
We used ResNet101 pretrained on the ImageNet in our experiments. You can download the model from:
- Cityscape to KITTI(Res101-based): GoogleDrive
- KITTI to Cityscape(Res101-based): GoogleDrive
- Cityscape to Foggycityscape(Res101-based): GoogleDrive
- Pascal VOC to WaterColor(Res101-based): GoogleDrive
- Daytime(Cityscape) to Night-time(Detrac-Night) (Res101-based): GoogleDrive
- Train SGA with Self-guided adversarial loss and hardness loss:
CUDA_VISIBLE_DEVICES=$GPU_ID python trainval_net_auto.py \
--dataset source_dataset --dataset_t target_dataset --net res101 \
--cuda
- Train SGA with all components(self-guided adversarial loss, hardness loss, self-guided progressive sampling)
CUDA_VISIBLE_DEVICES=$GPU_ID python trainval_net_auto_self_pace.py \
--dataset source_dataset --dataset_t target_dataset --net res101 \
--cuda