-
Notifications
You must be signed in to change notification settings - Fork 6
/
zjuL5.py
217 lines (175 loc) · 7.3 KB
/
zjuL5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# This file is mostly taken from BTS; author: Jin Han Lee, with only slight modifications
import os
import random
import json
import h5py
import numpy as np
import torch
import torch.utils.data.distributed
from PIL import Image
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from copy import deepcopy
from ..utils.dataloader import seed_worker, sample_point_from_hist_parallel, get_hist_parallel, patch_info_from_rect_data
def _is_pil_image(img):
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
def preprocessing_transforms(mode):
return transforms.Compose([
ToTensor(mode=mode)
])
class ZJUL5(object):
def __init__(self, args, mode):
assert mode == 'online_eval'
self.testing_samples = DataLoadPreprocess(args, mode, transform=preprocessing_transforms(mode))
self.data = DataLoader(self.testing_samples, 1,
shuffle=False,
num_workers=0,
pin_memory=False)
class DataLoadPreprocess(Dataset):
def __init__(self, args, mode, transform=None, is_for_online_eval=False):
self.args = deepcopy(args)
self.args.mode = mode
fname, md = None, None
if mode == 'online_eval':
md = 'test'
self.fname_json = args.filenames_file_eval
self.data_path = args.data_path_eval
with open(self.fname_json, 'r') as json_file:
print(self.fname_json)
json_data = json.load(json_file)
self.sample_list = json_data[md]
self.mode = mode
self.transform = transform
self.to_tensor = ToTensor
self.is_for_online_eval = is_for_online_eval
self.K_list = torch.Tensor([
611.2,
609.6,
323.4,
244.9
])
self.zone_num = 8
def __getitem__(self, idx):
# import ipdb; ipdb.set_trace()
focal = self.K_list[0].item()
path_file = os.path.join(self.data_path,
self.sample_list[idx]['filename'])
f = h5py.File(path_file, 'r')
rgb_h5 = f['rgb'][:]
dep_h5 = f['depth'][:]
image = Image.fromarray(rgb_h5, mode='RGB')
depth_gt = Image.fromarray(dep_h5.astype('float32'), mode='F')
image = np.array(image, dtype=np.float32) / 255.0
depth_gt = np.array(depth_gt, dtype=np.float32)
depth_gt = np.expand_dims(depth_gt, axis=2)
fname = self.sample_list[idx]['filename']
image_path = fname[fname.rfind('/')+1:].replace('h5', 'jpg')
image_folder = fname[:fname.rfind('/')]
if self.mode == 'online_eval':
sample = {'image': image, 'depth': depth_gt, 'focal': focal, 'has_valid_depth': True,
'image_path': image_path, 'image_folder': image_folder}
else:
sample = {'image': image, 'focal': focal}
if self.transform:
sample = self.transform(sample)
hist_data, fr, mask = torch.from_numpy(f['hist_data'][:]), torch.from_numpy(f['fr'][:]), torch.from_numpy(f['mask'][:])
fh = sample_point_from_hist_parallel(hist_data, mask, self.args)
patch_info = patch_info_from_rect_data(fr)
sample['additional'] = {
'hist_data': fh.to(torch.float),
'raw_data': hist_data.to(torch.float),
'rect_data': fr.to(torch.float),
'mask': mask,
'patch_info': patch_info
}
return sample
def rotate_image(self, image, angle, flag=Image.BILINEAR):
result = image.rotate(angle, resample=flag)
return result
def random_crop(self, img, depth, height, width):
assert img.shape[0] >= height
assert img.shape[1] >= width
assert img.shape[0] == depth.shape[0]
assert img.shape[1] == depth.shape[1]
x = random.randint(0, img.shape[1] - width)
y = random.randint(0, img.shape[0] - height)
img = img[y:y + height, x:x + width, :]
depth = depth[y:y + height, x:x + width, :]
return img, depth
def train_preprocess(self, image, depth_gt):
# Random flipping
do_flip = random.random()
if do_flip > 0.5:
image = (image[:, ::-1, :]).copy()
depth_gt = (depth_gt[:, ::-1, :]).copy()
# Random gamma, brightness, color augmentation
do_augment = random.random()
if do_augment > 0.5:
image = self.augment_image(image)
return image, depth_gt
def augment_image(self, image):
# gamma augmentation
gamma = random.uniform(0.9, 1.1)
image_aug = image ** gamma
# brightness augmentation
brightness = random.uniform(0.75, 1.25)
image_aug = image_aug * brightness
# color augmentation
colors = np.random.uniform(0.9, 1.1, size=3)
white = np.ones((image.shape[0], image.shape[1]))
color_image = np.stack([white * colors[i] for i in range(3)], axis=2)
image_aug *= color_image
image_aug = np.clip(image_aug, 0, 1)
return image_aug
def __len__(self):
return len(self.sample_list)
class ToTensor(object):
def __init__(self, mode):
self.mode = mode
self.normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
def __call__(self, sample):
image, focal = sample['image'], sample['focal']
image = self.to_tensor(image)
# import ipdb; ipdb.set_trace()
image = self.normalize(image)
if self.mode == 'test':
return {'image': image, 'focal': focal}
depth = sample['depth']
if self.mode == 'train':
depth = self.to_tensor(depth)
return {'image': image, 'depth': depth, 'focal': focal}
else:
has_valid_depth = sample['has_valid_depth']
depth = self.to_tensor(depth)
return {'image': image, 'depth': depth, 'focal': focal, 'has_valid_depth': has_valid_depth,
'image_path': sample['image_path'], 'image_folder': sample['image_folder']}
def to_tensor(self, pic):
if not (_is_pil_image(pic) or _is_numpy_image(pic)):
raise TypeError(
'pic should be PIL Image or ndarray. Got {}'.format(type(pic)))
if isinstance(pic, np.ndarray):
# img = torch.from_numpy(pic.copy().transpose((2, 0, 1)))
img = torch.from_numpy(pic.transpose((2, 0, 1)))
return img
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
img = img.transpose(0, 1).transpose(0, 2).contiguous()
if isinstance(img, torch.ByteTensor):
return img.float()
else:
return img