forked from kubernetes/kubernetes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flowrate.go
267 lines (243 loc) · 8.02 KB
/
flowrate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//
// Written by Maxim Khitrov (November 2012)
//
// Package flowrate provides the tools for monitoring and limiting the flow rate
// of an arbitrary data stream.
package flowrate
import (
"math"
"sync"
"time"
)
// Monitor monitors and limits the transfer rate of a data stream.
type Monitor struct {
mu sync.Mutex // Mutex guarding access to all internal fields
active bool // Flag indicating an active transfer
start time.Duration // Transfer start time (clock() value)
bytes int64 // Total number of bytes transferred
samples int64 // Total number of samples taken
rSample float64 // Most recent transfer rate sample (bytes per second)
rEMA float64 // Exponential moving average of rSample
rPeak float64 // Peak transfer rate (max of all rSamples)
rWindow float64 // rEMA window (seconds)
sBytes int64 // Number of bytes transferred since sLast
sLast time.Duration // Most recent sample time (stop time when inactive)
sRate time.Duration // Sampling rate
tBytes int64 // Number of bytes expected in the current transfer
tLast time.Duration // Time of the most recent transfer of at least 1 byte
}
// New creates a new flow control monitor. Instantaneous transfer rate is
// measured and updated for each sampleRate interval. windowSize determines the
// weight of each sample in the exponential moving average (EMA) calculation.
// The exact formulas are:
//
// sampleTime = currentTime - prevSampleTime
// sampleRate = byteCount / sampleTime
// weight = 1 - exp(-sampleTime/windowSize)
// newRate = weight*sampleRate + (1-weight)*oldRate
//
// The default values for sampleRate and windowSize (if <= 0) are 100ms and 1s,
// respectively.
func New(sampleRate, windowSize time.Duration) *Monitor {
if sampleRate = clockRound(sampleRate); sampleRate <= 0 {
sampleRate = 5 * clockRate
}
if windowSize <= 0 {
windowSize = 1 * time.Second
}
now := clock()
return &Monitor{
active: true,
start: now,
rWindow: windowSize.Seconds(),
sLast: now,
sRate: sampleRate,
tLast: now,
}
}
// Update records the transfer of n bytes and returns n. It should be called
// after each Read/Write operation, even if n is 0.
func (m *Monitor) Update(n int) int {
m.mu.Lock()
m.update(n)
m.mu.Unlock()
return n
}
// IO is a convenience method intended to wrap io.Reader and io.Writer method
// execution. It calls m.Update(n) and then returns (n, err) unmodified.
func (m *Monitor) IO(n int, err error) (int, error) {
return m.Update(n), err
}
// Done marks the transfer as finished and prevents any further updates or
// limiting. Instantaneous and current transfer rates drop to 0. Update, IO, and
// Limit methods become NOOPs. It returns the total number of bytes transferred.
func (m *Monitor) Done() int64 {
m.mu.Lock()
if now := m.update(0); m.sBytes > 0 {
m.reset(now)
}
m.active = false
m.tLast = 0
n := m.bytes
m.mu.Unlock()
return n
}
// timeRemLimit is the maximum Status.TimeRem value.
const timeRemLimit = 999*time.Hour + 59*time.Minute + 59*time.Second
// Status represents the current Monitor status. All transfer rates are in bytes
// per second rounded to the nearest byte.
type Status struct {
Active bool // Flag indicating an active transfer
Start time.Time // Transfer start time
Duration time.Duration // Time period covered by the statistics
Idle time.Duration // Time since the last transfer of at least 1 byte
Bytes int64 // Total number of bytes transferred
Samples int64 // Total number of samples taken
InstRate int64 // Instantaneous transfer rate
CurRate int64 // Current transfer rate (EMA of InstRate)
AvgRate int64 // Average transfer rate (Bytes / Duration)
PeakRate int64 // Maximum instantaneous transfer rate
BytesRem int64 // Number of bytes remaining in the transfer
TimeRem time.Duration // Estimated time to completion
Progress Percent // Overall transfer progress
}
// Status returns current transfer status information. The returned value
// becomes static after a call to Done.
func (m *Monitor) Status() Status {
m.mu.Lock()
now := m.update(0)
s := Status{
Active: m.active,
Start: clockToTime(m.start),
Duration: m.sLast - m.start,
Idle: now - m.tLast,
Bytes: m.bytes,
Samples: m.samples,
PeakRate: round(m.rPeak),
BytesRem: m.tBytes - m.bytes,
Progress: percentOf(float64(m.bytes), float64(m.tBytes)),
}
if s.BytesRem < 0 {
s.BytesRem = 0
}
if s.Duration > 0 {
rAvg := float64(s.Bytes) / s.Duration.Seconds()
s.AvgRate = round(rAvg)
if s.Active {
s.InstRate = round(m.rSample)
s.CurRate = round(m.rEMA)
if s.BytesRem > 0 {
if tRate := 0.8*m.rEMA + 0.2*rAvg; tRate > 0 {
ns := float64(s.BytesRem) / tRate * 1e9
if ns > float64(timeRemLimit) {
ns = float64(timeRemLimit)
}
s.TimeRem = clockRound(time.Duration(ns))
}
}
}
}
m.mu.Unlock()
return s
}
// Limit restricts the instantaneous (per-sample) data flow to rate bytes per
// second. It returns the maximum number of bytes (0 <= n <= want) that may be
// transferred immediately without exceeding the limit. If block == true, the
// call blocks until n > 0. want is returned unmodified if want < 1, rate < 1,
// or the transfer is inactive (after a call to Done).
//
// At least one byte is always allowed to be transferred in any given sampling
// period. Thus, if the sampling rate is 100ms, the lowest achievable flow rate
// is 10 bytes per second.
//
// For usage examples, see the implementation of Reader and Writer in io.go.
func (m *Monitor) Limit(want int, rate int64, block bool) (n int) {
if want < 1 || rate < 1 {
return want
}
m.mu.Lock()
// Determine the maximum number of bytes that can be sent in one sample
limit := round(float64(rate) * m.sRate.Seconds())
if limit <= 0 {
limit = 1
}
// If block == true, wait until m.sBytes < limit
if now := m.update(0); block {
for m.sBytes >= limit && m.active {
now = m.waitNextSample(now)
}
}
// Make limit <= want (unlimited if the transfer is no longer active)
if limit -= m.sBytes; limit > int64(want) || !m.active {
limit = int64(want)
}
m.mu.Unlock()
if limit < 0 {
limit = 0
}
return int(limit)
}
// SetTransferSize specifies the total size of the data transfer, which allows
// the Monitor to calculate the overall progress and time to completion.
func (m *Monitor) SetTransferSize(bytes int64) {
if bytes < 0 {
bytes = 0
}
m.mu.Lock()
m.tBytes = bytes
m.mu.Unlock()
}
// update accumulates the transferred byte count for the current sample until
// clock() - m.sLast >= m.sRate. The monitor status is updated once the current
// sample is done.
func (m *Monitor) update(n int) (now time.Duration) {
if !m.active {
return
}
if now = clock(); n > 0 {
m.tLast = now
}
m.sBytes += int64(n)
if sTime := now - m.sLast; sTime >= m.sRate {
t := sTime.Seconds()
if m.rSample = float64(m.sBytes) / t; m.rSample > m.rPeak {
m.rPeak = m.rSample
}
// Exponential moving average using a method similar to *nix load
// average calculation. Longer sampling periods carry greater weight.
if m.samples > 0 {
w := math.Exp(-t / m.rWindow)
m.rEMA = m.rSample + w*(m.rEMA-m.rSample)
} else {
m.rEMA = m.rSample
}
m.reset(now)
}
return
}
// reset clears the current sample state in preparation for the next sample.
func (m *Monitor) reset(sampleTime time.Duration) {
m.bytes += m.sBytes
m.samples++
m.sBytes = 0
m.sLast = sampleTime
}
// waitNextSample sleeps for the remainder of the current sample. The lock is
// released and reacquired during the actual sleep period, so it's possible for
// the transfer to be inactive when this method returns.
func (m *Monitor) waitNextSample(now time.Duration) time.Duration {
const minWait = 5 * time.Millisecond
current := m.sLast
// sleep until the last sample time changes (ideally, just one iteration)
for m.sLast == current && m.active {
d := current + m.sRate - now
m.mu.Unlock()
if d < minWait {
d = minWait
}
time.Sleep(d)
m.mu.Lock()
now = m.update(0)
}
return now
}