-
Notifications
You must be signed in to change notification settings - Fork 145
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add pytorch_Pix2Pix_cGAN.py: implementation of Pix2Pix with conditional GAN (cGAN) #14
Open
anh-nn01
wants to merge
2
commits into
znxlwm:master
Choose a base branch
from
anh-nn01:cgan-pix2pix
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,361 @@ | ||
""" | ||
This is the code for Pix2Pix framework: https://arxiv.org/abs/1611.07004 | ||
|
||
The basic idea of Pix2Pix is to use conditional GAN (cGAN) to train a model | ||
to translate an image representation to another representation. | ||
E.g: satellite -> map; original -> cartoon; scence day -> scene night; etc | ||
=> the output is "conditioned" on the input image | ||
|
||
Some details about the framework | ||
1. Training framework: Generative Adversarial Network (GAN) | ||
+ Input: original image I1 | ||
+ Output: translated image I2 (size(I1) = size(I2)) | ||
2. Generator: U-Net | ||
3. Discriminator: Convolutional Neural Network Binary Classifier | ||
""" | ||
|
||
import os, time | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
import itertools | ||
import pickle | ||
import imageio | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torchvision | ||
from torchvision import datasets, transforms | ||
from torch.autograd import Variable | ||
|
||
""" | ||
The Generator is a U-Net 256 with skip connections between Encoder and Decoder | ||
""" | ||
class generator(nn.Module): | ||
def __init__(self, ngpu): | ||
super(generator, self).__init__() | ||
self.ngpu = ngpu | ||
|
||
""" | ||
===== Encoder ====== | ||
|
||
* Encoder has the following architecture: | ||
0) Inp3 | ||
1) C64 | ||
2) Leaky, C128, Norm | ||
3) Leaky, C256, Norm | ||
4) Leaky, C512, Norm | ||
5) Leaky, C512, Norm | ||
6) Leaky, C512, Norm | ||
7) Leaky, C512 | ||
|
||
* The structure of 1 encoder block is: | ||
1) LeakyReLU(prev layer) | ||
2) Conv2D | ||
3) BatchNorm | ||
|
||
Where Conv2D has kernel_size-4, stride=2, padding=1 for all layers | ||
""" | ||
self.encoder1 = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False) | ||
|
||
self.encoder2 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(128) | ||
) | ||
|
||
self.encoder3 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(256), | ||
) | ||
|
||
self.encoder4 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512) | ||
) | ||
|
||
self.encoder5 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512) | ||
) | ||
|
||
self.encoder6 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512) | ||
) | ||
|
||
self.encoder7 = nn.Sequential( | ||
nn.LeakyReLU(0.2, inplace=True), | ||
nn.Conv2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False) | ||
) | ||
|
||
""" | ||
===== Decoder ===== | ||
* Decoder has the following architecture: | ||
1) ReLU(from latent space), DC512, Norm, Drop 0.5 - Residual | ||
2) ReLU, DC512, Norm, Drop 0.5, Residual | ||
3) ReLU, DC512, Norm, Drop 0.5, Residual | ||
4) ReLU, DC256, Norm, Residual | ||
5) ReLU, DC128, Norm, Residual | ||
6) ReLU, DC64, Norm, Residual | ||
7) ReLU, DC3, Tanh() | ||
|
||
* Note: only apply Dropout in the first 3 Decoder layers | ||
|
||
* The structure of each Decoder block is: | ||
1) ReLU(from prev layer) | ||
2) ConvTranspose2D | ||
3) BatchNorm | ||
4) Dropout | ||
5) Skip connection | ||
|
||
Where ConvTranpose2D has kernel_size=4, stride=2, padding=1 | ||
""" | ||
self.decoder1 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=512, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512), | ||
nn.Dropout(0.5) | ||
) | ||
# skip connection in forward() | ||
|
||
self.decoder2 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=512*2, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512), | ||
nn.Dropout(0.5) | ||
) | ||
# skip connection in forward() | ||
|
||
self.decoder3 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=512*2, out_channels=512, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(512), | ||
nn.Dropout(0.5) | ||
) | ||
# skip connection in forward() | ||
|
||
self.decoder4 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=512*2, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(256), | ||
#nn.Dropout(0.5) | ||
) | ||
|
||
self.decoder5 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=256*2, out_channels=128, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(128), | ||
#nn.Dropout(0.5) | ||
) | ||
|
||
self.decoder6 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=128*2, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(64), | ||
#nn.Dropout(0.5) | ||
) | ||
|
||
self.decoder7 = nn.Sequential( | ||
nn.ReLU(inplace=True), | ||
nn.ConvTranspose2d(in_channels=64*2, out_channels=3, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.Tanh() | ||
) | ||
|
||
def forward(self, x): | ||
e1 = self.encoder1(x) | ||
e2 = self.encoder2(e1) | ||
e3 = self.encoder3(e2) | ||
e4 = self.encoder4(e3) | ||
e5 = self.encoder5(e4) | ||
e6 = self.encoder6(e5) | ||
|
||
latent_space = self.encoder7(e6) | ||
|
||
d1 = torch.cat([self.decoder1(latent_space), e6], dim=1) | ||
d2 = torch.cat([self.decoder2(d1), e5], dim=1) | ||
d3 = torch.cat([self.decoder3(d2), e4], dim=1) | ||
d4 = torch.cat([self.decoder4(d3), e3], dim=1) | ||
d5 = torch.cat([self.decoder5(d4), e2], dim=1) | ||
d6 = torch.cat([self.decoder6(d5), e1], dim=1) | ||
|
||
out = self.decoder7(d6) | ||
|
||
return out | ||
|
||
""" | ||
The Discriminator is the binary classifier with CNN architecture | ||
""" | ||
class discriminator(nn.Module): | ||
def __init__(self, ngpu): | ||
super(discriminator, self).__init__() | ||
self.ngpu = ngpu | ||
|
||
self.structure = nn.Sequential( | ||
nn.Conv2d(in_channels=3*2, out_channels=64, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
|
||
nn.Conv2d(in_channels=64, out_channels= 128, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(128), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
|
||
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=4, stride=2, padding=1, bias=False), | ||
nn.BatchNorm2d(256), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
|
||
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=4, stride=1, padding=1, bias=False), | ||
nn.BatchNorm2d(512), | ||
nn.LeakyReLU(0.2, inplace=True), | ||
|
||
nn.Conv2d(in_channels=512, out_channels=1, kernel_size=4, stride=1, padding=1, bias=False), | ||
nn.Sigmoid() | ||
) | ||
|
||
def forward(self, x): | ||
return self.structure(x) | ||
|
||
""" | ||
weight initializer | ||
""" | ||
def weights_init(m): | ||
name = m.__class__.__name__ | ||
|
||
if(name.find("Conv") > -1): | ||
nn.init.normal_(m.weight.data, 0.0, 0.02) # ~N(mean=0.0, std=0.02) | ||
elif(name.find("BatchNorm") > -1): | ||
nn.init.normal_(m.weight.data, 1.0, 0.02) | ||
nn.init.constant_(m.bias.data, 0.0) | ||
|
||
def show_image(img, title="No title", figsize=(5,5)): | ||
img = img.numpy().transpose(1,2,0) | ||
mean = np.array([0.5, 0.5, 0.5]) | ||
std = np.array([0.5, 0.5, 0.5]) | ||
|
||
img = img * std + mean | ||
np.clip(img, 0, 1) | ||
|
||
plt.figure(figsize=figsize) | ||
plt.imshow(img) | ||
plt.title(title) | ||
plt.imsave(f'{title}.png') | ||
|
||
# training parameters | ||
NUM_EPOCHS=100 | ||
bs=1 # suggested by the paper | ||
lr=0.0002 | ||
beta1=0.5 | ||
beta2=0.999 | ||
NUM_EPOCHS = 200 | ||
ngpu = 1 | ||
L1_lambda = 100 | ||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | ||
|
||
# data_loader | ||
data_dir = "maps" | ||
data_transform = transforms.Compose([ | ||
transforms.Resize((256, 512)), | ||
transforms.CenterCrop((256, 512)), | ||
transforms.RandomVerticalFlip(p=0.5), | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) | ||
]) | ||
dataset_train = datasets.ImageFolder(root=os.path.join(data_dir, "train"), transform=data_transform) | ||
dataset_val = datasets.ImageFolder(root=os.path.join(data_dir, "val"), transform=data_transform) | ||
dataloader_train = torch.utils.data.DataLoader(dataset_train, batch_size=bs, shuffle=True, num_workers=0) | ||
dataloader_val = torch.utils.data.DataLoader(dataset_val, batch_size=24, shuffle=True, num_workers=0) | ||
|
||
# network | ||
model_G = generator(ngpu=1) | ||
if(device == "cuda" and ngpu > 1): | ||
model_G = nn.DataParallel(model_G, list(range(ngpu))) | ||
model_G.apply(weights_init) | ||
model_G.to(device) | ||
|
||
model_D = discriminator(ngpu=1) | ||
if(device == "cuda" and ngpu>1): | ||
model_D = torch.DataParallel(model_D, list(range(ngpu))) | ||
model_D.apply(weights_init) | ||
model_D.to(device) | ||
|
||
# Binary Cross Entropy loss | ||
criterion = nn.BCELoss() | ||
|
||
# Adam optimizer | ||
optimizerD = optim.Adam(model_D.parameters(), lr=lr, betas=(beta1, beta2)) | ||
optimizerG = optim.Adam(model_G.parameters(), lr=lr, betas=(beta1, beta2)) | ||
|
||
for epoch in range(NUM_EPOCHS+1): | ||
print(f"Training epoch {epoch+1}") | ||
for images,_ in iter(dataloader_train): | ||
# ========= Train Discriminator =========== | ||
# Train on real data | ||
# Maximize log(D(x,y)) <- maximize D(x,y) | ||
model_D.zero_grad() | ||
|
||
inputs = images[:,:,:,:256].to(device) # input image data | ||
targets = images[:,:,:,256:].to(device) # real targets data | ||
|
||
real_data = torch.cat([inputs, targets], dim=1).to(device) | ||
outputs = model_D(real_data) # label "real" data | ||
labels = torch.ones(size = outputs.shape, dtype=torch.float, device=device) | ||
|
||
lossD_real = 0.5 * criterion(outputs, labels) # divide the objective by 2 -> slow down D | ||
lossD_real.backward() | ||
|
||
# Train on fake data | ||
# Maximize log(1-D(x,G(x))) <- minimize D(x,G(x)) | ||
gens = model_G(inputs).detach() | ||
|
||
fake_data = torch.cat([inputs, gens], dim=1) # generated image data | ||
outputs = model_D(fake_data) | ||
labels = torch.zeros(size = outputs.shape, dtype=torch.float, device=device) # label "fake" data | ||
|
||
lossD_fake = 0.5 * criterion(outputs, labels) # divide the objective by 2 -> slow down D | ||
lossD_fake.backward() | ||
|
||
optimizerD.step() | ||
|
||
# ========= Train Generator x2 times ============ | ||
# maximize log(D(x, G(x))) | ||
for i in range(2): | ||
model_G.zero_grad() | ||
|
||
gens = model_G(inputs) | ||
|
||
gen_data = torch.cat([inputs, gens], dim=1) # concatenated generated data | ||
outputs = model_D(gen_data) | ||
labels = torch.ones(size = outputs.shape, dtype=torch.float, device=device) | ||
|
||
lossG = criterion(outputs, labels) + L1_lambda * torch.abs(gens-targets).sum() | ||
lossG.backward() | ||
optimizerG.step() | ||
|
||
if(epoch%5==0): | ||
torch.save(model_G, "./sat2map_model_G.pth") # save Generator's weights | ||
torch.save(model_D, "./sat2map_model_D.pth") # save Discriminator's weights | ||
print("Done!") | ||
|
||
|
||
"""******************************************************* | ||
Generator Evaluation | ||
*******************************************************""" | ||
model_G = torch.load("./sat2map_model_G.pth") | ||
model_G.apply(weights_init) | ||
test_imgs,_ = next(iter(dataloader_val)) | ||
|
||
satellite = test_imgs[:,:,:,:256].to(device) | ||
maps = test_imgs[:,:,:,256:].to(device) | ||
|
||
gen = model_G(satellite) | ||
#gen = gen[0] | ||
|
||
satellite = satellite.detach().cpu() | ||
gen = gen.detach().cpu() | ||
maps = maps.detach().cpu() | ||
|
||
show_image(torchvision.utils.make_grid(satellite, padding=10), title="Pix2Pix - Input Satellite Images", figsize=(50,50)) | ||
show_image(torchvision.utils.make_grid(gen, padding=10), title="Pix2Pix - Generated Maps", figsize=(50,50)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
torch==0.1.12+cu80 | ||
torchvision==0.1.8+cu80 | ||
matplotlib==1.3.1 | ||
imageio==2.2.0 | ||
scipy==0.19.1 |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Please ignore this file in this commit and only care about requirements.txt. The correct pytorch_Pix2Pix_cGAN is in the later commit.