- Prepare DTU training set(640x512).
- Edit config.py: set "DatasetsArgs.root_dir", "LoadDTU.train_root&train_pair".
- Run the script for training.
python train.py
The pre-training model in "pth".
- Prepare DTU test set(1600x1200)(百度网盘 提取码:6au3) and Tanks and Temples dataset(百度网盘 提取码:a4oz).
- Edit config.py: set "DatasetsArgs.root_dir", "LoadDTU.eval_root&eval_pair", and "LoadTanks.eval_root"
- Run the script for the test.
# DTU
python eval.py -p pth/dtu_16.pth -d dtu
# Tanks and Temples
python eval.py -p pth/dtu_16.pth -d tanks
There two methods in "tools": "filter"and "gipuma".
- Install fusibile tools: https://github.com/kysucix/fusibile
- Edit tools/gipuma/conf.py: set "root_dir", "eval_folder" and "fusibile_exe_path".
- Run the script.
cd tools/gipuma
python fusion.py -cfmgd
- Run the script.
# filter
cd tools/filter
python dynamic_filter_gpu.py -e EVAL_OUTPUT_LOCATION -r DATASET_PATH -o OUTPUT_PATH
Our work is partially baed on these opening source work: MVSNet, MVSNet-pytorch, D2HC-RMVSNet. We appreciate their contributions to the MVS community.
This work will be published in Applied Intelligence.