Skip to content

zongh5a/AP-UCSNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Uncertainty awareness with adaptive propagation for multi-view stereo

Training

  1. Prepare DTU training set(640x512).
  2. Edit config.py: set "DatasetsArgs.root_dir", "LoadDTU.train_root&train_pair".
  3. Run the script for training.
python train.py  

Testing

The pre-training model in "pth".

  1. Prepare DTU test set(1600x1200)(百度网盘 提取码:6au3) and Tanks and Temples dataset(百度网盘 提取码:a4oz).
  2. Edit config.py: set "DatasetsArgs.root_dir", "LoadDTU.eval_root&eval_pair", and "LoadTanks.eval_root"
  3. Run the script for the test.
# DTU
python eval.py -p pth/dtu_16.pth -d dtu
# Tanks and Temples
python eval.py -p pth/dtu_16.pth -d tanks

Fusion

There two methods in "tools": "filter"and "gipuma".

DTU dataset

  1. Install fusibile tools: https://github.com/kysucix/fusibile
  2. Edit tools/gipuma/conf.py: set "root_dir", "eval_folder" and "fusibile_exe_path".
  3. Run the script.
cd tools/gipuma
python fusion.py -cfmgd

Tanks and Temples dataset

  1. Run the script.
# filter
cd tools/filter
python dynamic_filter_gpu.py -e EVAL_OUTPUT_LOCATION -r DATASET_PATH -o OUTPUT_PATH 

Acknowledgements

Our work is partially baed on these opening source work: MVSNet, MVSNet-pytorch, D2HC-RMVSNet. We appreciate their contributions to the MVS community.

Citation

This work will be published in Applied Intelligence.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages