Skip to content

[CVPR2019] Fast Online Object Tracking and Segmentation: A Unifying Approach

License

Notifications You must be signed in to change notification settings

zumrudu-anka/SiamMask

 
 

Repository files navigation

Linux | Windows

SiamMask

NEW: now including code for both training and inference!

PWC

This is the official implementation with training code for SiamMask (CVPR2019). For technical details, please refer to:

Fast Online Object Tracking and Segmentation: A Unifying Approach
Qiang Wang*, Li Zhang*, Luca Bertinetto*, Weiming Hu, Philip H.S. Torr (* denotes equal contribution)
CVPR 2019
[Paper] [Video] [Project Page]

Bibtex

If you find this code useful, please consider citing:

@inproceedings{wang2019fast,
    title={Fast online object tracking and segmentation: A unifying approach},
    author={Wang, Qiang and Zhang, Li and Bertinetto, Luca and Hu, Weiming and Torr, Philip HS},
    booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
    year={2019}
}

Contents

  1. Environment Setup
  2. Demo
  3. Testing
  4. Training

Environment setup

This code has been tested on Ubuntu 16.04, Python 3.6, Pytorch 0.4.1, CUDA 9.2, RTX 2080 GPUs

  • Clone the repository
git clone https://github.com/foolwood/SiamMask.git && cd SiamMask
export SiamMask=$PWD
  • Setup python environment
conda create -n siammask python=3.6
source activate siammask
pip install -r requirements.txt
bash make.sh
  • Add the project to your PYTHONPATH
export PYTHONPATH=$PWD:$PYTHONPATH

Demo

  • Setup your environment
  • Download the SiamMask model
cd $SiamMask/experiments/siammask_sharp
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_DAVIS.pth
  • Run demo.py
cd $SiamMask/experiments/siammask_sharp
export PYTHONPATH=$PWD:$PYTHONPATH
python ../../tools/demo.py --resume SiamMask_DAVIS.pth --config config_davis.json

Testing

  • Setup your environment
  • Download test data
cd $SiamMask/data
sudo apt-get install jq
bash get_test_data.sh
  • Download pretrained models
cd $SiamMask/experiments/siammask_sharp
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_VOT_LD.pth
wget http://www.robots.ox.ac.uk/~qwang/SiamMask_DAVIS.pth
  • Evaluate performance on VOT
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2016 0
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2018 0
bash test_mask_refine.sh config_vot.json SiamMask_VOT.pth VOT2019 0
bash test_mask_refine.sh config_vot18.json SiamMask_VOT_LD.pth VOT2016 0
bash test_mask_refine.sh config_vot18.json SiamMask_VOT_LD.pth VOT2018 0
python ../../tools/eval.py --dataset VOT2016 --tracker_prefix C --result_dir ./test/VOT2016
python ../../tools/eval.py --dataset VOT2018 --tracker_prefix C --result_dir ./test/VOT2018
python ../../tools/eval.py --dataset VOT2019 --tracker_prefix C --result_dir ./test/VOT2019
  • Evaluate performance on DAVIS (less than 50s)
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth DAVIS2016 0
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth DAVIS2017 0
bash test_mask_refine.sh config_davis.json SiamMask_DAVIS.pth ytb_vos 0

Results

These are the reproduction results from this repository. All results can be downloaded from our project page.

Tracker VOT2016
EAO / A / R
VOT2018
EAO / A / R
DAVIS2016
J / F
DAVIS2017
J / F
Youtube-VOS
J_s / J_u / F_s / F_u
Speed
SiamMask-box 0.412/0.623/0.233 0.363/0.584/0.300 - / - - / - - / - / - / - 77 FPS
SiamMask 0.433/0.639/0.214 0.380/0.609/0.276 0.713/0.674 0.543/0.585 0.602/0.451/0.582/0.477 56 FPS
SiamMask-LD 0.455/0.634/0.219 0.423/0.615/0.248 - / - - / - - / - / - / - 56 FPS

Note:

  • Speed are tested on a NVIDIA RTX 2080.
  • -box reports an axis-aligned bounding box from the box branch.
  • -LD means training with large dataset (ytb-bb+ytb-vos+vid+coco+det).

Training

Training Data

Download the pre-trained model (174 MB)

(This model was trained on the ImageNet-1k Dataset)

cd $SiamMask/experiments
wget http://www.robots.ox.ac.uk/~qwang/resnet.model
ls | grep siam | xargs -I {} cp resnet.model {}

Training SiamMask base model

  • Setup your environment
  • From the experiment directory, run
cd $SiamMask/experiments/siammask_base/
bash run.sh
  • Training takes about 10 hours in our 4 Tesla V100 GPUs.
  • If you experience out-of-memory errors, you can reduce the batch size in run.sh.
  • You can view progress on Tensorboard (logs are at <experiment_dir>/logs/)
  • After training, you can test checkpoints on VOT dataset.
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4  # test all snapshots with 4 GPUs
  • Select best model for hyperparametric search.
#bash test_all.sh -m [best_test_model] -d VOT2018 -n [thread_num] -g [gpu_num] # 8 threads with 4 GPUS
bash test_all.sh -m snapshot/checkpoint_e12.pth -d VOT2018 -n 8 -g 4 # 8 threads with 4 GPUS

Training SiamMask model with the Refine module

  • Setup your environment
  • In the experiment file, train with the best SiamMask base model
cd $SiamMask/experiments/siammask_sharp
bash run.sh <best_base_model>
bash run.sh checkpoint_e12.pth
  • You can view progress on Tensorboard (logs are at <experiment_dir>/logs/)
  • After training, you can test checkpoints on VOT dataset
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4

Training SiamRPN++ model (unofficial)

  • Setup your environment
  • From the experiment directory, run
cd $SiamMask/experiments/siamrpn_resnet
bash run.sh
  • You can view progress on Tensorboard (logs are at <experiment_dir>/logs/)
  • After training, you can test checkpoints on VOT dataset
bash test_all.sh -h
bash test_all.sh -s 1 -e 20 -d VOT2018 -g 4

License

Licensed under an MIT license.

About

[CVPR2019] Fast Online Object Tracking and Segmentation: A Unifying Approach

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 80.4%
  • C 14.7%
  • C++ 2.6%
  • Shell 2.2%
  • Makefile 0.1%