forked from breznak/caer
-
Notifications
You must be signed in to change notification settings - Fork 0
AER event-based framework, written in C, targeting embedded systems.
License
zwhua888/caer
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
caer ==== AER event-based framework, written in C, targeting embedded systems. REQUIREMENTS: Linux, MacOS X or Windows (for Windows build instructions see README.Windows) cmake >= 2.6 gcc >= 4.9 or clang >= 3.6 libcaer >= 2.0.0 mini-xml (mxml) >= 2.7 libuv >= 1.7.5 Optional: libpng >= 1.6 (input/output frame PNG compression) Optional: tcmalloc >= 2.2 (faster memory allocation) Optional: allegro5 >= 5.0.11 (visualizer module) Optional: OpenCV >= 3.1 (cameracalibration, poseestimation modules) INSTALLATION: 1) configure: $ cmake . One of the following options is required to select a device: -DDVS128=1 - set dvs128 (for DVS128 model) -DDAVISFX2=1 - set davisfx2 (for DAVIS240A/B/C models) -DDAVISFX3=1 - set davisfx3 (for FX3 platform models) Optional input/output modules: -DENABLE_FILE_INPUT=1 -DENABLE_NETWORK_INPUT=1 -DENABLE_FILE_OUTPUT=1 -DENABLE_NETWORK_OUTPUT=1 Optional modules: -DENABLE_BAFILTER=1 - enable background activity filter module -DENABLE_STATISTICS=1 - enable console statistics module -DENABLE_VISUALIZER=1 - enable visualizer module -DENABLE_IMAGEGENERATOR=1 - enable image generator -DENABLE_CAMERACALIBRATION=1 - enable camera calibration this requires OpenCV 3.1.0 to be installed - -DENABLE_POSEESTIMATION=1 - enable camera pose estimation, this requires OpenCV 3.1.0 with extra modules from https://github.com/Itseez/opencv_contrib - -DENABLE_CAFFEINTERFACE=1 - Caffe interface to cAER, deep learning framework - https://github.com/BVLC/caffe - A custom location can be specified for the caffe library using Caffe_DIRECTORY This module depends on the imagegenerator module (ie. it requires -DENABLE_IMAGEGENERATOR=1) It also requires Caffe installed as well as Boost/OpenCV/Protobuffer (same as Caffe). You can load deep networks that have been trained with Caffe (like alexnet/caffenet/vgg etc.) This module can be configured by editing the file: "module/caffeinterface/settings.h" -DCAFFE_CPU_ONLY=1 - to use the Caffe framework with CPU only (ie. no GPU) -DCaffe_DIRECTORY=<caffe dir> - to define custom caffe installation folder -DENABLE_IMAGESTREAMERBEEPER=1 - this module produces beeps based on classification results 2) build: $ make 3) install: $ make install USAGE: $ caer-bin (see docs/ for more info on how to use cAER) $ caer-ctl (run-time settings control program, optional)
About
AER event-based framework, written in C, targeting embedded systems.
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published
Languages
- C 95.7%
- C++ 2.7%
- CMake 1.6%