Skip to content
/ caer Public
forked from breznak/caer

AER event-based framework, written in C, targeting embedded systems.

License

Notifications You must be signed in to change notification settings

zwhua888/caer

 
 

Repository files navigation

caer
====

AER event-based framework, written in C, targeting embedded systems.

REQUIREMENTS:

Linux, MacOS X or Windows (for Windows build instructions see README.Windows)
cmake >= 2.6
gcc >= 4.9 or clang >= 3.6
libcaer >= 2.0.0
mini-xml (mxml) >= 2.7
libuv >= 1.7.5
Optional: libpng >= 1.6 (input/output frame PNG compression)
Optional: tcmalloc >= 2.2 (faster memory allocation)
Optional: allegro5 >= 5.0.11 (visualizer module)
Optional: OpenCV >= 3.1 (cameracalibration, poseestimation modules)

INSTALLATION:

1) configure: 

$ cmake . 

One of the following options is required to select a device:
 -DDVS128=1           - set dvs128 (for DVS128 model)
 -DDAVISFX2=1         - set davisfx2 (for DAVIS240A/B/C models)
 -DDAVISFX3=1         - set davisfx3 (for FX3 platform models)

Optional input/output modules:
 -DENABLE_FILE_INPUT=1
 -DENABLE_NETWORK_INPUT=1
 -DENABLE_FILE_OUTPUT=1
 -DENABLE_NETWORK_OUTPUT=1

Optional modules:
 -DENABLE_BAFILTER=1    - enable background activity filter module
 -DENABLE_STATISTICS=1  - enable console statistics module
 -DENABLE_VISUALIZER=1  - enable visualizer module
 -DENABLE_IMAGEGENERATOR=1 - enable image generator
 -DENABLE_CAMERACALIBRATION=1 - enable camera calibration this requires OpenCV 3.1.0 to be installed - 
 -DENABLE_POSEESTIMATION=1 - enable camera pose estimation, this requires OpenCV 3.1.0 with extra modules from https://github.com/Itseez/opencv_contrib -
 -DENABLE_CAFFEINTERFACE=1 - Caffe interface to cAER, deep learning framework - https://github.com/BVLC/caffe - 

		A custom location can be specified for the caffe library using Caffe_DIRECTORY 

		This module depends on the imagegenerator module  (ie. it requires -DENABLE_IMAGEGENERATOR=1)
		It also requires Caffe installed as well as Boost/OpenCV/Protobuffer (same as Caffe).
		You can load deep networks that have been trained with Caffe (like alexnet/caffenet/vgg etc.)

		This module can be configured by editing the file: 
			"module/caffeinterface/settings.h"
		-DCAFFE_CPU_ONLY=1 - to use the Caffe framework with CPU only (ie. no GPU)
		-DCaffe_DIRECTORY=<caffe dir>  - to define custom caffe installation folder 

 -DENABLE_IMAGESTREAMERBEEPER=1 - this module produces beeps based on classification results 

2) build:

$ make

3) install:

$ make install

USAGE:

$ caer-bin (see docs/ for more info on how to use cAER)
$ caer-ctl (run-time settings control program, optional)

About

AER event-based framework, written in C, targeting embedded systems.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 95.7%
  • C++ 2.7%
  • CMake 1.6%