This is the PyTorch implementation of the paper "MMPOI: A Multi-Modal Content-Aware Framework for POI Recommendations"
-
Download dataset from https://drive.google.com/file/d/17FbNvkO74xub6AeT2fpm938qDqUDB-04/view?usp=sharing.
-
Unzip
NYC.zip
todataset/
. -
Run
build_graph.py
to construct the sequence graphs from the training data. -
Train the model using
python train.py
. All hyper-parameters are defined inparam_parser.py
NYC: https://drive.google.com/file/d/1v0BvKs46ixUf1CgjRlk9MY5JsFL7ILxC/view?usp=sharing
TKY: https://drive.google.com/file/d/1Cpnp2iEmHGfvUkOL-8myeQmyOuq4LmV7/view?usp=sharing
Please cite our paper if you use these datasets, thank you very much!
@inproceedings{DBLP:conf/www/XuCZC24,
author = {Yang Xu and
Gao Cong and
Lei Zhu and
Lizhen Cui},
title = {{MMPOI:} {A} Multi-Modal Content-Aware Framework for {POI} Recommendations},
booktitle = {Proceedings of the {ACM} on Web Conference 2024, {WWW} 2024, Singapore,
May 13-17, 2024},
pages = {3454--3463},
publisher = {{ACM}},
year = {2024},
url = {https://doi.org/10.1145/3589334.3645449},
doi = {10.1145/3589334.3645449}
}