A lightweight, purpose-built Memory Graph MCP server for persistent AI workspace memory. Designed specifically for the MCP Platform with minimal dependencies and fast deployment.
- Persistent Memory Storage: SQLite-based storage for memories with key-value access
- Knowledge Graph: Create relationships between memories with typed connections
- Tag System: Organize memories with tags for easy categorization
- Search & Discovery: Full-text search across memory content and metadata
- Relationship Traversal: Navigate connected memories through relationship paths
- Lightweight: No heavy ML dependencies, fast startup and deployment
- save_memory - Store a memory with key, content, tags, and metadata
- recall_memory - Retrieve a memory by key, optionally with related memories
- delete_memory - Remove a memory and all its relationships
- search_memories - Search memories by content or filter by tags
- list_all_memories - List all stored memories with pagination
- link_memories - Create typed relationships between memories
- get_related_memories - Discover memories connected through relationships
- get_memory_stats - Get statistics about total memories, relationships, and tags
// Save a memory
await mcp.callTool('save_memory', {
key: 'project_requirements',
content: 'Build a memory system for AI workspace persistence',
tags: ['project', 'requirements'],
metadata: { priority: 'high', due_date: '2024-01-15' }
});
// Recall a memory
await mcp.callTool('recall_memory', {
key: 'project_requirements',
include_related: true
});
// Search memories
await mcp.callTool('search_memories', {
query: 'memory system',
tags: ['project'],
limit: 10
});
// Create relationships
await mcp.callTool('link_memories', {
from_key: 'project_requirements',
to_key: 'technical_architecture',
relationship_type: 'requires',
strength: 0.9
});
await mcp.callTool('link_memories', {
from_key: 'technical_architecture',
to_key: 'implementation_plan',
relationship_type: 'leads_to',
strength: 0.8
});
// Discover related memories
await mcp.callTool('get_related_memories', {
key: 'project_requirements',
relationship_type: 'requires'
});
Common relationship types for organizing knowledge:
relates_to
- General associationdepends_on
- Dependency relationshipcaused_by
- Causal relationshipleads_to
- Sequential relationshiprequires
- Requirement relationshipimplements
- Implementation relationshipreferences
- Reference relationship
{
"key": "unique_identifier",
"content": "The actual memory content",
"metadata": {
"custom": "fields",
"priority": "high"
},
"tags": ["tag1", "tag2"],
"created_at": "2024-01-01T00:00:00Z",
"updated_at": "2024-01-01T00:00:00Z"
}
{
"from_key": "source_memory",
"to_key": "target_memory",
"relationship_type": "relates_to",
"strength": 0.8
}
This MCP server is designed for deployment in the MCP Platform's Kubernetes infrastructure:
- Lightweight: Only uses SQLite, uuid, and MCP SDK dependencies
- Fast Startup: No compilation or heavy initialization required
- Memory Efficient: Uses in-memory SQLite for fast access
- Container Ready: Works with standard Node.js containers
# Install dependencies
npm install
# Run the server
npm start
# For development with auto-reload
npm run dev
MIT